Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscvlat Structured version   Visualization version   GIF version

Theorem iscvlat 39312
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
iscvlat.b 𝐵 = (Base‘𝐾)
iscvlat.l = (le‘𝐾)
iscvlat.j = (join‘𝐾)
iscvlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
iscvlat (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝑥,𝐵   𝑥,𝑝,𝐾,𝑞
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑞,𝑝)   (𝑥,𝑞,𝑝)   (𝑥,𝑞,𝑝)

Proof of Theorem iscvlat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 iscvlat.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2eqtr4di 2782 . . 3 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6822 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
5 iscvlat.b . . . . . 6 𝐵 = (Base‘𝐾)
64, 5eqtr4di 2782 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
7 fveq2 6822 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
8 iscvlat.l . . . . . . . . . 10 = (le‘𝐾)
97, 8eqtr4di 2782 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = )
109breqd 5103 . . . . . . . 8 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑥𝑝 𝑥))
1110notbid 318 . . . . . . 7 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑥 ↔ ¬ 𝑝 𝑥))
12 eqidd 2730 . . . . . . . 8 (𝑘 = 𝐾𝑝 = 𝑝)
13 fveq2 6822 . . . . . . . . . 10 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
14 iscvlat.j . . . . . . . . . 10 = (join‘𝐾)
1513, 14eqtr4di 2782 . . . . . . . . 9 (𝑘 = 𝐾 → (join‘𝑘) = )
1615oveqd 7366 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑞) = (𝑥 𝑞))
1712, 9, 16breq123d 5106 . . . . . . 7 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞) ↔ 𝑝 (𝑥 𝑞)))
1811, 17anbi12d 632 . . . . . 6 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) ↔ (¬ 𝑝 𝑥𝑝 (𝑥 𝑞))))
19 eqidd 2730 . . . . . . 7 (𝑘 = 𝐾𝑞 = 𝑞)
2015oveqd 7366 . . . . . . 7 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑝) = (𝑥 𝑝))
2119, 9, 20breq123d 5106 . . . . . 6 (𝑘 = 𝐾 → (𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝) ↔ 𝑞 (𝑥 𝑝)))
2218, 21imbi12d 344 . . . . 5 (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
236, 22raleqbidv 3309 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
243, 23raleqbidv 3309 . . 3 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
253, 24raleqbidv 3309 . 2 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
26 df-cvlat 39311 . 2 CvLat = {𝑘 ∈ AtLat ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝))}
2725, 26elrab2 3651 1 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Atomscatm 39252  AtLatcal 39253  CvLatclc 39254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-cvlat 39311
This theorem is referenced by:  iscvlat2N  39313  cvlatl  39314  cvlexch1  39317  ishlat2  39342
  Copyright terms: Public domain W3C validator