Step | Hyp | Ref
| Expression |
1 | | fveq2 6771 |
. . . 4
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) |
2 | | iscvlat.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
3 | 1, 2 | eqtr4di 2798 |
. . 3
⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
4 | | fveq2 6771 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) |
5 | | iscvlat.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
6 | 4, 5 | eqtr4di 2798 |
. . . . 5
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
7 | | fveq2 6771 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) |
8 | | iscvlat.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
9 | 7, 8 | eqtr4di 2798 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
10 | 9 | breqd 5090 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑥 ↔ 𝑝 ≤ 𝑥)) |
11 | 10 | notbid 318 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑥 ↔ ¬ 𝑝 ≤ 𝑥)) |
12 | | eqidd 2741 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → 𝑝 = 𝑝) |
13 | | fveq2 6771 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾)) |
14 | | iscvlat.j |
. . . . . . . . . 10
⊢ ∨ =
(join‘𝐾) |
15 | 13, 14 | eqtr4di 2798 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (join‘𝑘) = ∨ ) |
16 | 15 | oveqd 7288 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑞) = (𝑥 ∨ 𝑞)) |
17 | 12, 9, 16 | breq123d 5093 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞) ↔ 𝑝 ≤ (𝑥 ∨ 𝑞))) |
18 | 11, 17 | anbi12d 631 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑥 ∧ 𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) ↔ (¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)))) |
19 | | eqidd 2741 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → 𝑞 = 𝑞) |
20 | 15 | oveqd 7288 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑝) = (𝑥 ∨ 𝑝)) |
21 | 19, 9, 20 | breq123d 5093 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝) ↔ 𝑞 ≤ (𝑥 ∨ 𝑝))) |
22 | 18, 21 | imbi12d 345 |
. . . . 5
⊢ (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑥 ∧ 𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
23 | 6, 22 | raleqbidv 3335 |
. . . 4
⊢ (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥 ∧ 𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
24 | 3, 23 | raleqbidv 3335 |
. . 3
⊢ (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥 ∧ 𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
25 | 3, 24 | raleqbidv 3335 |
. 2
⊢ (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥 ∧ 𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |
26 | | df-cvlat 37332 |
. 2
⊢ CvLat =
{𝑘 ∈ AtLat ∣
∀𝑝 ∈
(Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥 ∧ 𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝))} |
27 | 25, 26 | elrab2 3629 |
1
⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧
∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) |