Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscvlat Structured version   Visualization version   GIF version

Theorem iscvlat 37337
Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
iscvlat.b 𝐵 = (Base‘𝐾)
iscvlat.l = (le‘𝐾)
iscvlat.j = (join‘𝐾)
iscvlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
iscvlat (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝑥,𝐵   𝑥,𝑝,𝐾,𝑞
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑞,𝑝)   (𝑥,𝑞,𝑝)   (𝑥,𝑞,𝑝)

Proof of Theorem iscvlat
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 iscvlat.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2eqtr4di 2796 . . 3 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6774 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
5 iscvlat.b . . . . . 6 𝐵 = (Base‘𝐾)
64, 5eqtr4di 2796 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
7 fveq2 6774 . . . . . . . . . 10 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
8 iscvlat.l . . . . . . . . . 10 = (le‘𝐾)
97, 8eqtr4di 2796 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = )
109breqd 5085 . . . . . . . 8 (𝑘 = 𝐾 → (𝑝(le‘𝑘)𝑥𝑝 𝑥))
1110notbid 318 . . . . . . 7 (𝑘 = 𝐾 → (¬ 𝑝(le‘𝑘)𝑥 ↔ ¬ 𝑝 𝑥))
12 eqidd 2739 . . . . . . . 8 (𝑘 = 𝐾𝑝 = 𝑝)
13 fveq2 6774 . . . . . . . . . 10 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
14 iscvlat.j . . . . . . . . . 10 = (join‘𝐾)
1513, 14eqtr4di 2796 . . . . . . . . 9 (𝑘 = 𝐾 → (join‘𝑘) = )
1615oveqd 7292 . . . . . . . 8 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑞) = (𝑥 𝑞))
1712, 9, 16breq123d 5088 . . . . . . 7 (𝑘 = 𝐾 → (𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞) ↔ 𝑝 (𝑥 𝑞)))
1811, 17anbi12d 631 . . . . . 6 (𝑘 = 𝐾 → ((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) ↔ (¬ 𝑝 𝑥𝑝 (𝑥 𝑞))))
19 eqidd 2739 . . . . . . 7 (𝑘 = 𝐾𝑞 = 𝑞)
2015oveqd 7292 . . . . . . 7 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑝) = (𝑥 𝑝))
2119, 9, 20breq123d 5088 . . . . . 6 (𝑘 = 𝐾 → (𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝) ↔ 𝑞 (𝑥 𝑝)))
2218, 21imbi12d 345 . . . . 5 (𝑘 = 𝐾 → (((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
236, 22raleqbidv 3336 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
243, 23raleqbidv 3336 . . 3 (𝑘 = 𝐾 → (∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
253, 24raleqbidv 3336 . 2 (𝑘 = 𝐾 → (∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝)) ↔ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
26 df-cvlat 37336 . 2 CvLat = {𝑘 ∈ AtLat ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)∀𝑥 ∈ (Base‘𝑘)((¬ 𝑝(le‘𝑘)𝑥𝑝(le‘𝑘)(𝑥(join‘𝑘)𝑞)) → 𝑞(le‘𝑘)(𝑥(join‘𝑘)𝑝))}
2725, 26elrab2 3627 1 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Atomscatm 37277  AtLatcal 37278  CvLatclc 37279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-cvlat 37336
This theorem is referenced by:  iscvlat2N  37338  cvlatl  37339  cvlexch1  37342  ishlat2  37367
  Copyright terms: Public domain W3C validator