| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-deg1 | Structured version Visualization version GIF version | ||
| Description: Define the degree of a univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| df-deg1 | ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdg1 26093 | . 2 class deg1 | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | c1o 8499 | . . . 4 class 1o | |
| 5 | 2 | cv 1539 | . . . 4 class 𝑟 |
| 6 | cmdg 26092 | . . . 4 class mDeg | |
| 7 | 4, 5, 6 | co 7431 | . . 3 class (1o mDeg 𝑟) |
| 8 | 2, 3, 7 | cmpt 5225 | . 2 class (𝑟 ∈ V ↦ (1o mDeg 𝑟)) |
| 9 | 1, 8 | wceq 1540 | 1 wff deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: deg1fval 26119 |
| Copyright terms: Public domain | W3C validator |