Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-deg1 | Structured version Visualization version GIF version |
Description: Define the degree of a univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
df-deg1 | ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdg1 25121 | . 2 class deg1 | |
2 | vr | . . 3 setvar 𝑟 | |
3 | cvv 3422 | . . 3 class V | |
4 | c1o 8260 | . . . 4 class 1o | |
5 | 2 | cv 1538 | . . . 4 class 𝑟 |
6 | cmdg 25120 | . . . 4 class mDeg | |
7 | 4, 5, 6 | co 7255 | . . 3 class (1o mDeg 𝑟) |
8 | 2, 3, 7 | cmpt 5153 | . 2 class (𝑟 ∈ V ↦ (1o mDeg 𝑟)) |
9 | 1, 8 | wceq 1539 | 1 wff deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) |
Colors of variables: wff setvar class |
This definition is referenced by: deg1fval 25150 |
Copyright terms: Public domain | W3C validator |