MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmdeg Structured version   Visualization version   GIF version

Theorem reldmmdeg 25219
Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
reldmmdeg Rel dom mDeg

Proof of Theorem reldmmdeg
Dummy variables 𝑖 𝑟 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mdeg 25217 . 2 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
21reldmmpo 7408 1 Rel dom mDeg
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3432  cmpt 5157  dom cdm 5589  ran crn 5590  Rel wrel 5594  cfv 6433  (class class class)co 7275   supp csupp 7977  supcsup 9199  *cxr 11008   < clt 11009  Basecbs 16912  0gc0g 17150   Σg cgsu 17151  fldccnfld 20597   mPoly cmpl 21109   mDeg cmdg 25215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-oprab 7279  df-mpo 7280  df-mdeg 25217
This theorem is referenced by:  mdegfval  25227  deg1fval  25245
  Copyright terms: Public domain W3C validator