| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmdeg | Structured version Visualization version GIF version | ||
| Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmdeg | ⊢ Rel dom mDeg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mdeg 25987 | . 2 ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld Σg ℎ)), ℝ*, < ))) | |
| 2 | 1 | reldmmpo 7480 | 1 ⊢ Rel dom mDeg |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ↦ cmpt 5170 dom cdm 5614 ran crn 5615 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 supcsup 9324 ℝ*cxr 11145 < clt 11146 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 ℂfldccnfld 21291 mPoly cmpl 21843 mDeg cmdg 25985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-oprab 7350 df-mpo 7351 df-mdeg 25987 |
| This theorem is referenced by: mdegfval 25994 deg1fval 26012 |
| Copyright terms: Public domain | W3C validator |