| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmdeg | Structured version Visualization version GIF version | ||
| Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmdeg | ⊢ Rel dom mDeg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mdeg 25936 | . 2 ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld Σg ℎ)), ℝ*, < ))) | |
| 2 | 1 | reldmmpo 7503 | 1 ⊢ Rel dom mDeg |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ↦ cmpt 5183 dom cdm 5631 ran crn 5632 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 supcsup 9367 ℝ*cxr 11183 < clt 11184 Basecbs 17155 0gc0g 17378 Σg cgsu 17379 ℂfldccnfld 21240 mPoly cmpl 21791 mDeg cmdg 25934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-oprab 7373 df-mpo 7374 df-mdeg 25936 |
| This theorem is referenced by: mdegfval 25943 deg1fval 25961 |
| Copyright terms: Public domain | W3C validator |