| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmdeg | Structured version Visualization version GIF version | ||
| Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmdeg | ⊢ Rel dom mDeg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mdeg 25960 | . 2 ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld Σg ℎ)), ℝ*, < ))) | |
| 2 | 1 | reldmmpo 7523 | 1 ⊢ Rel dom mDeg |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 supcsup 9391 ℝ*cxr 11207 < clt 11208 Basecbs 17179 0gc0g 17402 Σg cgsu 17403 ℂfldccnfld 21264 mPoly cmpl 21815 mDeg cmdg 25958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 df-mdeg 25960 |
| This theorem is referenced by: mdegfval 25967 deg1fval 25985 |
| Copyright terms: Public domain | W3C validator |