| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmdeg | Structured version Visualization version GIF version | ||
| Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmmdeg | ⊢ Rel dom mDeg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mdeg 26095 | . 2 ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld Σg ℎ)), ℝ*, < ))) | |
| 2 | 1 | reldmmpo 7568 | 1 ⊢ Rel dom mDeg |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3479 ↦ cmpt 5224 dom cdm 5684 ran crn 5685 Rel wrel 5689 ‘cfv 6560 (class class class)co 7432 supp csupp 8186 supcsup 9481 ℝ*cxr 11295 < clt 11296 Basecbs 17248 0gc0g 17485 Σg cgsu 17486 ℂfldccnfld 21365 mPoly cmpl 21927 mDeg cmdg 26093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-dm 5694 df-oprab 7436 df-mpo 7437 df-mdeg 26095 |
| This theorem is referenced by: mdegfval 26102 deg1fval 26120 |
| Copyright terms: Public domain | W3C validator |