Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmmdeg | Structured version Visualization version GIF version |
Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
reldmmdeg | ⊢ Rel dom mDeg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mdeg 25217 | . 2 ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld Σg ℎ)), ℝ*, < ))) | |
2 | 1 | reldmmpo 7408 | 1 ⊢ Rel dom mDeg |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3432 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 Rel wrel 5594 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 supcsup 9199 ℝ*cxr 11008 < clt 11009 Basecbs 16912 0gc0g 17150 Σg cgsu 17151 ℂfldccnfld 20597 mPoly cmpl 21109 mDeg cmdg 25215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-oprab 7279 df-mpo 7280 df-mdeg 25217 |
This theorem is referenced by: mdegfval 25227 deg1fval 25245 |
Copyright terms: Public domain | W3C validator |