Detailed syntax breakdown of Definition df-mdeg
| Step | Hyp | Ref
| Expression |
| 1 | | cmdg 26092 |
. 2
class
mDeg |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vf |
. . . 4
setvar 𝑓 |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑖 |
| 7 | 3 | cv 1539 |
. . . . . 6
class 𝑟 |
| 8 | | cmpl 21926 |
. . . . . 6
class
mPoly |
| 9 | 6, 7, 8 | co 7431 |
. . . . 5
class (𝑖 mPoly 𝑟) |
| 10 | | cbs 17247 |
. . . . 5
class
Base |
| 11 | 9, 10 | cfv 6561 |
. . . 4
class
(Base‘(𝑖 mPoly
𝑟)) |
| 12 | | vh |
. . . . . . 7
setvar ℎ |
| 13 | 5 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 14 | | c0g 17484 |
. . . . . . . . 9
class
0g |
| 15 | 7, 14 | cfv 6561 |
. . . . . . . 8
class
(0g‘𝑟) |
| 16 | | csupp 8185 |
. . . . . . . 8
class
supp |
| 17 | 13, 15, 16 | co 7431 |
. . . . . . 7
class (𝑓 supp (0g‘𝑟)) |
| 18 | | ccnfld 21364 |
. . . . . . . 8
class
ℂfld |
| 19 | 12 | cv 1539 |
. . . . . . . 8
class ℎ |
| 20 | | cgsu 17485 |
. . . . . . . 8
class
Σg |
| 21 | 18, 19, 20 | co 7431 |
. . . . . . 7
class
(ℂfld Σg ℎ) |
| 22 | 12, 17, 21 | cmpt 5225 |
. . . . . 6
class (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld
Σg ℎ)) |
| 23 | 22 | crn 5686 |
. . . . 5
class ran
(ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦
(ℂfld Σg ℎ)) |
| 24 | | cxr 11294 |
. . . . 5
class
ℝ* |
| 25 | | clt 11295 |
. . . . 5
class
< |
| 26 | 23, 24, 25 | csup 9480 |
. . . 4
class sup(ran
(ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦
(ℂfld Σg ℎ)), ℝ*, <
) |
| 27 | 5, 11, 26 | cmpt 5225 |
. . 3
class (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld
Σg ℎ)), ℝ*, <
)) |
| 28 | 2, 3, 4, 4, 27 | cmpo 7433 |
. 2
class (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld
Σg ℎ)), ℝ*, <
))) |
| 29 | 1, 28 | wceq 1540 |
1
wff mDeg =
(𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld
Σg ℎ)), ℝ*, <
))) |