MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1fval Structured version   Visualization version   GIF version

Theorem deg1fval 26099
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
deg1fval.d 𝐷 = (deg1𝑅)
Assertion
Ref Expression
deg1fval 𝐷 = (1o mDeg 𝑅)

Proof of Theorem deg1fval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 deg1fval.d . 2 𝐷 = (deg1𝑅)
2 oveq2 7431 . . . 4 (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅))
3 df-deg1 26072 . . . 4 deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟))
4 ovex 7456 . . . 4 (1o mDeg 𝑅) ∈ V
52, 3, 4fvmpt 7008 . . 3 (𝑅 ∈ V → (deg1𝑅) = (1o mDeg 𝑅))
6 fvprc 6892 . . . 4 𝑅 ∈ V → (deg1𝑅) = ∅)
7 reldmmdeg 26073 . . . . 5 Rel dom mDeg
87ovprc2 7463 . . . 4 𝑅 ∈ V → (1o mDeg 𝑅) = ∅)
96, 8eqtr4d 2768 . . 3 𝑅 ∈ V → (deg1𝑅) = (1o mDeg 𝑅))
105, 9pm2.61i 182 . 2 (deg1𝑅) = (1o mDeg 𝑅)
111, 10eqtri 2753 1 𝐷 = (1o mDeg 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  Vcvv 3461  c0 4324  cfv 6553  (class class class)co 7423  1oc1o 8488   mDeg cmdg 26069  deg1cdg1 26070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4325  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-mdeg 26071  df-deg1 26072
This theorem is referenced by:  deg1xrf  26100  deg1cl  26102  deg1propd  26105  deg1z  26106  deg1nn0cl  26107  deg1ldg  26111  deg1leb  26114  deg1val  26115  deg1addle  26120  deg1vscale  26123  deg1vsca  26124  deg1mulle2  26128  deg1le0  26130
  Copyright terms: Public domain W3C validator