Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1fval | Structured version Visualization version GIF version |
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
deg1fval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
Ref | Expression |
---|---|
deg1fval | ⊢ 𝐷 = (1o mDeg 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1fval.d | . 2 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | oveq2 7345 | . . . 4 ⊢ (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅)) | |
3 | df-deg1 25324 | . . . 4 ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | |
4 | ovex 7370 | . . . 4 ⊢ (1o mDeg 𝑅) ∈ V | |
5 | 2, 3, 4 | fvmpt 6931 | . . 3 ⊢ (𝑅 ∈ V → ( deg1 ‘𝑅) = (1o mDeg 𝑅)) |
6 | fvprc 6817 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ( deg1 ‘𝑅) = ∅) | |
7 | reldmmdeg 25325 | . . . . 5 ⊢ Rel dom mDeg | |
8 | 7 | ovprc2 7377 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mDeg 𝑅) = ∅) |
9 | 6, 8 | eqtr4d 2779 | . . 3 ⊢ (¬ 𝑅 ∈ V → ( deg1 ‘𝑅) = (1o mDeg 𝑅)) |
10 | 5, 9 | pm2.61i 182 | . 2 ⊢ ( deg1 ‘𝑅) = (1o mDeg 𝑅) |
11 | 1, 10 | eqtri 2764 | 1 ⊢ 𝐷 = (1o mDeg 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4269 ‘cfv 6479 (class class class)co 7337 1oc1o 8360 mDeg cmdg 25321 deg1 cdg1 25322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-mdeg 25323 df-deg1 25324 |
This theorem is referenced by: deg1xrf 25352 deg1cl 25354 deg1propd 25357 deg1z 25358 deg1nn0cl 25359 deg1ldg 25363 deg1leb 25366 deg1val 25367 deg1addle 25372 deg1vscale 25375 deg1vsca 25376 deg1mulle2 25380 deg1le0 25382 |
Copyright terms: Public domain | W3C validator |