MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1fval Structured version   Visualization version   GIF version

Theorem deg1fval 25598
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
deg1fval.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
deg1fval 𝐷 = (1o mDeg 𝑅)

Proof of Theorem deg1fval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 deg1fval.d . 2 𝐷 = ( deg1𝑅)
2 oveq2 7417 . . . 4 (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅))
3 df-deg1 25571 . . . 4 deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟))
4 ovex 7442 . . . 4 (1o mDeg 𝑅) ∈ V
52, 3, 4fvmpt 6999 . . 3 (𝑅 ∈ V → ( deg1𝑅) = (1o mDeg 𝑅))
6 fvprc 6884 . . . 4 𝑅 ∈ V → ( deg1𝑅) = ∅)
7 reldmmdeg 25572 . . . . 5 Rel dom mDeg
87ovprc2 7449 . . . 4 𝑅 ∈ V → (1o mDeg 𝑅) = ∅)
96, 8eqtr4d 2776 . . 3 𝑅 ∈ V → ( deg1𝑅) = (1o mDeg 𝑅))
105, 9pm2.61i 182 . 2 ( deg1𝑅) = (1o mDeg 𝑅)
111, 10eqtri 2761 1 𝐷 = (1o mDeg 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2107  Vcvv 3475  c0 4323  cfv 6544  (class class class)co 7409  1oc1o 8459   mDeg cmdg 25568   deg1 cdg1 25569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-mdeg 25570  df-deg1 25571
This theorem is referenced by:  deg1xrf  25599  deg1cl  25601  deg1propd  25604  deg1z  25605  deg1nn0cl  25606  deg1ldg  25610  deg1leb  25613  deg1val  25614  deg1addle  25619  deg1vscale  25622  deg1vsca  25623  deg1mulle2  25627  deg1le0  25629
  Copyright terms: Public domain W3C validator