| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1fval | Structured version Visualization version GIF version | ||
| Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| deg1fval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| Ref | Expression |
|---|---|
| deg1fval | ⊢ 𝐷 = (1o mDeg 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1fval.d | . 2 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | oveq2 7360 | . . . 4 ⊢ (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅)) | |
| 3 | df-deg1 25989 | . . . 4 ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | |
| 4 | ovex 7385 | . . . 4 ⊢ (1o mDeg 𝑅) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6935 | . . 3 ⊢ (𝑅 ∈ V → (deg1‘𝑅) = (1o mDeg 𝑅)) |
| 6 | fvprc 6820 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = ∅) | |
| 7 | reldmmdeg 25990 | . . . . 5 ⊢ Rel dom mDeg | |
| 8 | 7 | ovprc2 7392 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mDeg 𝑅) = ∅) |
| 9 | 6, 8 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = (1o mDeg 𝑅)) |
| 10 | 5, 9 | pm2.61i 182 | . 2 ⊢ (deg1‘𝑅) = (1o mDeg 𝑅) |
| 11 | 1, 10 | eqtri 2756 | 1 ⊢ 𝐷 = (1o mDeg 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ‘cfv 6486 (class class class)co 7352 1oc1o 8384 mDeg cmdg 25986 deg1cdg1 25987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-mdeg 25988 df-deg1 25989 |
| This theorem is referenced by: deg1xrf 26014 deg1cl 26016 deg1propd 26019 deg1z 26020 deg1nn0cl 26021 deg1ldg 26025 deg1leb 26028 deg1val 26029 deg1addle 26034 deg1vscale 26037 deg1vsca 26038 deg1mulle2 26042 deg1le0 26044 |
| Copyright terms: Public domain | W3C validator |