MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1fval Structured version   Visualization version   GIF version

Theorem deg1fval 26010
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
deg1fval.d 𝐷 = (deg1𝑅)
Assertion
Ref Expression
deg1fval 𝐷 = (1o mDeg 𝑅)

Proof of Theorem deg1fval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 deg1fval.d . 2 𝐷 = (deg1𝑅)
2 oveq2 7354 . . . 4 (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅))
3 df-deg1 25986 . . . 4 deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟))
4 ovex 7379 . . . 4 (1o mDeg 𝑅) ∈ V
52, 3, 4fvmpt 6929 . . 3 (𝑅 ∈ V → (deg1𝑅) = (1o mDeg 𝑅))
6 fvprc 6814 . . . 4 𝑅 ∈ V → (deg1𝑅) = ∅)
7 reldmmdeg 25987 . . . . 5 Rel dom mDeg
87ovprc2 7386 . . . 4 𝑅 ∈ V → (1o mDeg 𝑅) = ∅)
96, 8eqtr4d 2769 . . 3 𝑅 ∈ V → (deg1𝑅) = (1o mDeg 𝑅))
105, 9pm2.61i 182 . 2 (deg1𝑅) = (1o mDeg 𝑅)
111, 10eqtri 2754 1 𝐷 = (1o mDeg 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  cfv 6481  (class class class)co 7346  1oc1o 8378   mDeg cmdg 25983  deg1cdg1 25984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-mdeg 25985  df-deg1 25986
This theorem is referenced by:  deg1xrf  26011  deg1cl  26013  deg1propd  26016  deg1z  26017  deg1nn0cl  26018  deg1ldg  26022  deg1leb  26025  deg1val  26026  deg1addle  26031  deg1vscale  26034  deg1vsca  26035  deg1mulle2  26039  deg1le0  26041
  Copyright terms: Public domain W3C validator