![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1fval | Structured version Visualization version GIF version |
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
deg1fval.d | ⊢ 𝐷 = (deg1‘𝑅) |
Ref | Expression |
---|---|
deg1fval | ⊢ 𝐷 = (1o mDeg 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1fval.d | . 2 ⊢ 𝐷 = (deg1‘𝑅) | |
2 | oveq2 7431 | . . . 4 ⊢ (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅)) | |
3 | df-deg1 26072 | . . . 4 ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | |
4 | ovex 7456 | . . . 4 ⊢ (1o mDeg 𝑅) ∈ V | |
5 | 2, 3, 4 | fvmpt 7008 | . . 3 ⊢ (𝑅 ∈ V → (deg1‘𝑅) = (1o mDeg 𝑅)) |
6 | fvprc 6892 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = ∅) | |
7 | reldmmdeg 26073 | . . . . 5 ⊢ Rel dom mDeg | |
8 | 7 | ovprc2 7463 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mDeg 𝑅) = ∅) |
9 | 6, 8 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = (1o mDeg 𝑅)) |
10 | 5, 9 | pm2.61i 182 | . 2 ⊢ (deg1‘𝑅) = (1o mDeg 𝑅) |
11 | 1, 10 | eqtri 2753 | 1 ⊢ 𝐷 = (1o mDeg 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∅c0 4324 ‘cfv 6553 (class class class)co 7423 1oc1o 8488 mDeg cmdg 26069 deg1cdg1 26070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7426 df-oprab 7427 df-mpo 7428 df-mdeg 26071 df-deg1 26072 |
This theorem is referenced by: deg1xrf 26100 deg1cl 26102 deg1propd 26105 deg1z 26106 deg1nn0cl 26107 deg1ldg 26111 deg1leb 26114 deg1val 26115 deg1addle 26120 deg1vscale 26123 deg1vsca 26124 deg1mulle2 26128 deg1le0 26130 |
Copyright terms: Public domain | W3C validator |