Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1fval | Structured version Visualization version GIF version |
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
deg1fval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
Ref | Expression |
---|---|
deg1fval | ⊢ 𝐷 = (1o mDeg 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1fval.d | . 2 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | oveq2 7263 | . . . 4 ⊢ (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅)) | |
3 | df-deg1 25123 | . . . 4 ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | |
4 | ovex 7288 | . . . 4 ⊢ (1o mDeg 𝑅) ∈ V | |
5 | 2, 3, 4 | fvmpt 6857 | . . 3 ⊢ (𝑅 ∈ V → ( deg1 ‘𝑅) = (1o mDeg 𝑅)) |
6 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ( deg1 ‘𝑅) = ∅) | |
7 | reldmmdeg 25124 | . . . . 5 ⊢ Rel dom mDeg | |
8 | 7 | ovprc2 7295 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mDeg 𝑅) = ∅) |
9 | 6, 8 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → ( deg1 ‘𝑅) = (1o mDeg 𝑅)) |
10 | 5, 9 | pm2.61i 182 | . 2 ⊢ ( deg1 ‘𝑅) = (1o mDeg 𝑅) |
11 | 1, 10 | eqtri 2766 | 1 ⊢ 𝐷 = (1o mDeg 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 1oc1o 8260 mDeg cmdg 25120 deg1 cdg1 25121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-mdeg 25122 df-deg1 25123 |
This theorem is referenced by: deg1xrf 25151 deg1cl 25153 deg1propd 25156 deg1z 25157 deg1nn0cl 25158 deg1ldg 25162 deg1leb 25165 deg1val 25166 deg1addle 25171 deg1vscale 25174 deg1vsca 25175 deg1mulle2 25179 deg1le0 25181 |
Copyright terms: Public domain | W3C validator |