MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1fval Structured version   Visualization version   GIF version

Theorem deg1fval 26134
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
deg1fval.d 𝐷 = (deg1𝑅)
Assertion
Ref Expression
deg1fval 𝐷 = (1o mDeg 𝑅)

Proof of Theorem deg1fval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 deg1fval.d . 2 𝐷 = (deg1𝑅)
2 oveq2 7439 . . . 4 (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅))
3 df-deg1 26110 . . . 4 deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟))
4 ovex 7464 . . . 4 (1o mDeg 𝑅) ∈ V
52, 3, 4fvmpt 7016 . . 3 (𝑅 ∈ V → (deg1𝑅) = (1o mDeg 𝑅))
6 fvprc 6899 . . . 4 𝑅 ∈ V → (deg1𝑅) = ∅)
7 reldmmdeg 26111 . . . . 5 Rel dom mDeg
87ovprc2 7471 . . . 4 𝑅 ∈ V → (1o mDeg 𝑅) = ∅)
96, 8eqtr4d 2778 . . 3 𝑅 ∈ V → (deg1𝑅) = (1o mDeg 𝑅))
105, 9pm2.61i 182 . 2 (deg1𝑅) = (1o mDeg 𝑅)
111, 10eqtri 2763 1 𝐷 = (1o mDeg 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  cfv 6563  (class class class)co 7431  1oc1o 8498   mDeg cmdg 26107  deg1cdg1 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-mdeg 26109  df-deg1 26110
This theorem is referenced by:  deg1xrf  26135  deg1cl  26137  deg1propd  26140  deg1z  26141  deg1nn0cl  26142  deg1ldg  26146  deg1leb  26149  deg1val  26150  deg1addle  26155  deg1vscale  26158  deg1vsca  26159  deg1mulle2  26163  deg1le0  26165
  Copyright terms: Public domain W3C validator