Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1fval | Structured version Visualization version GIF version |
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
deg1fval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
Ref | Expression |
---|---|
deg1fval | ⊢ 𝐷 = (1o mDeg 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1fval.d | . 2 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | oveq2 7283 | . . . 4 ⊢ (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅)) | |
3 | df-deg1 25218 | . . . 4 ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | |
4 | ovex 7308 | . . . 4 ⊢ (1o mDeg 𝑅) ∈ V | |
5 | 2, 3, 4 | fvmpt 6875 | . . 3 ⊢ (𝑅 ∈ V → ( deg1 ‘𝑅) = (1o mDeg 𝑅)) |
6 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ( deg1 ‘𝑅) = ∅) | |
7 | reldmmdeg 25219 | . . . . 5 ⊢ Rel dom mDeg | |
8 | 7 | ovprc2 7315 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mDeg 𝑅) = ∅) |
9 | 6, 8 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑅 ∈ V → ( deg1 ‘𝑅) = (1o mDeg 𝑅)) |
10 | 5, 9 | pm2.61i 182 | . 2 ⊢ ( deg1 ‘𝑅) = (1o mDeg 𝑅) |
11 | 1, 10 | eqtri 2766 | 1 ⊢ 𝐷 = (1o mDeg 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 1oc1o 8290 mDeg cmdg 25215 deg1 cdg1 25216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-mdeg 25217 df-deg1 25218 |
This theorem is referenced by: deg1xrf 25246 deg1cl 25248 deg1propd 25251 deg1z 25252 deg1nn0cl 25253 deg1ldg 25257 deg1leb 25260 deg1val 25261 deg1addle 25266 deg1vscale 25269 deg1vsca 25270 deg1mulle2 25274 deg1le0 25276 |
Copyright terms: Public domain | W3C validator |