| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1fval | Structured version Visualization version GIF version | ||
| Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| deg1fval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| Ref | Expression |
|---|---|
| deg1fval | ⊢ 𝐷 = (1o mDeg 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1fval.d | . 2 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | oveq2 7418 | . . . 4 ⊢ (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅)) | |
| 3 | df-deg1 26018 | . . . 4 ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | |
| 4 | ovex 7443 | . . . 4 ⊢ (1o mDeg 𝑅) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6991 | . . 3 ⊢ (𝑅 ∈ V → (deg1‘𝑅) = (1o mDeg 𝑅)) |
| 6 | fvprc 6873 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = ∅) | |
| 7 | reldmmdeg 26019 | . . . . 5 ⊢ Rel dom mDeg | |
| 8 | 7 | ovprc2 7450 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mDeg 𝑅) = ∅) |
| 9 | 6, 8 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = (1o mDeg 𝑅)) |
| 10 | 5, 9 | pm2.61i 182 | . 2 ⊢ (deg1‘𝑅) = (1o mDeg 𝑅) |
| 11 | 1, 10 | eqtri 2759 | 1 ⊢ 𝐷 = (1o mDeg 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 1oc1o 8478 mDeg cmdg 26015 deg1cdg1 26016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-mdeg 26017 df-deg1 26018 |
| This theorem is referenced by: deg1xrf 26043 deg1cl 26045 deg1propd 26048 deg1z 26049 deg1nn0cl 26050 deg1ldg 26054 deg1leb 26057 deg1val 26058 deg1addle 26063 deg1vscale 26066 deg1vsca 26067 deg1mulle2 26071 deg1le0 26073 |
| Copyright terms: Public domain | W3C validator |