MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1fval Structured version   Visualization version   GIF version

Theorem deg1fval 26042
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
deg1fval.d 𝐷 = (deg1𝑅)
Assertion
Ref Expression
deg1fval 𝐷 = (1o mDeg 𝑅)

Proof of Theorem deg1fval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 deg1fval.d . 2 𝐷 = (deg1𝑅)
2 oveq2 7418 . . . 4 (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅))
3 df-deg1 26018 . . . 4 deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟))
4 ovex 7443 . . . 4 (1o mDeg 𝑅) ∈ V
52, 3, 4fvmpt 6991 . . 3 (𝑅 ∈ V → (deg1𝑅) = (1o mDeg 𝑅))
6 fvprc 6873 . . . 4 𝑅 ∈ V → (deg1𝑅) = ∅)
7 reldmmdeg 26019 . . . . 5 Rel dom mDeg
87ovprc2 7450 . . . 4 𝑅 ∈ V → (1o mDeg 𝑅) = ∅)
96, 8eqtr4d 2774 . . 3 𝑅 ∈ V → (deg1𝑅) = (1o mDeg 𝑅))
105, 9pm2.61i 182 . 2 (deg1𝑅) = (1o mDeg 𝑅)
111, 10eqtri 2759 1 𝐷 = (1o mDeg 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  cfv 6536  (class class class)co 7410  1oc1o 8478   mDeg cmdg 26015  deg1cdg1 26016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-mdeg 26017  df-deg1 26018
This theorem is referenced by:  deg1xrf  26043  deg1cl  26045  deg1propd  26048  deg1z  26049  deg1nn0cl  26050  deg1ldg  26054  deg1leb  26057  deg1val  26058  deg1addle  26063  deg1vscale  26066  deg1vsca  26067  deg1mulle2  26071  deg1le0  26073
  Copyright terms: Public domain W3C validator