| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1fval | Structured version Visualization version GIF version | ||
| Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| deg1fval.d | ⊢ 𝐷 = (deg1‘𝑅) |
| Ref | Expression |
|---|---|
| deg1fval | ⊢ 𝐷 = (1o mDeg 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1fval.d | . 2 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | oveq2 7354 | . . . 4 ⊢ (𝑟 = 𝑅 → (1o mDeg 𝑟) = (1o mDeg 𝑅)) | |
| 3 | df-deg1 25986 | . . . 4 ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) | |
| 4 | ovex 7379 | . . . 4 ⊢ (1o mDeg 𝑅) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6929 | . . 3 ⊢ (𝑅 ∈ V → (deg1‘𝑅) = (1o mDeg 𝑅)) |
| 6 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = ∅) | |
| 7 | reldmmdeg 25987 | . . . . 5 ⊢ Rel dom mDeg | |
| 8 | 7 | ovprc2 7386 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1o mDeg 𝑅) = ∅) |
| 9 | 6, 8 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = (1o mDeg 𝑅)) |
| 10 | 5, 9 | pm2.61i 182 | . 2 ⊢ (deg1‘𝑅) = (1o mDeg 𝑅) |
| 11 | 1, 10 | eqtri 2754 | 1 ⊢ 𝐷 = (1o mDeg 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 mDeg cmdg 25983 deg1cdg1 25984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-mdeg 25985 df-deg1 25986 |
| This theorem is referenced by: deg1xrf 26011 deg1cl 26013 deg1propd 26016 deg1z 26017 deg1nn0cl 26018 deg1ldg 26022 deg1leb 26025 deg1val 26026 deg1addle 26031 deg1vscale 26034 deg1vsca 26035 deg1mulle2 26039 deg1le0 26041 |
| Copyright terms: Public domain | W3C validator |