MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrval Structured version   Visualization version   GIF version

Theorem dgrval 26287
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrval (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))

Proof of Theorem dgrval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 plyssc 26259 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 4004 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 fveq2 6920 . . . . . . 7 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
4 dgrval.1 . . . . . . 7 𝐴 = (coeff‘𝐹)
53, 4eqtr4di 2798 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴)
65cnveqd 5900 . . . . 5 (𝑓 = 𝐹(coeff‘𝑓) = 𝐴)
76imaeq1d 6088 . . . 4 (𝑓 = 𝐹 → ((coeff‘𝑓) “ (ℂ ∖ {0})) = (𝐴 “ (ℂ ∖ {0})))
87supeq1d 9515 . . 3 (𝑓 = 𝐹 → sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
9 df-dgr 26250 . . 3 deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ))
10 nn0ssre 12557 . . . . 5 0 ⊆ ℝ
11 ltso 11370 . . . . 5 < Or ℝ
12 soss 5628 . . . . 5 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1310, 11, 12mp2 9 . . . 4 < Or ℕ0
1413supex 9532 . . 3 sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V
158, 9, 14fvmpt 7029 . 2 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
162, 15syl 17 1 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cdif 3973  wss 3976  {csn 4648   Or wor 5606  ccnv 5699  cima 5703  cfv 6573  supcsup 9509  cc 11182  cr 11183  0cc0 11184   < clt 11324  0cn0 12553  Polycply 26243  coeffccoe 26245  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294  df-n0 12554  df-ply 26247  df-dgr 26250
This theorem is referenced by:  dgrcl  26292  dgrub  26293  dgrlb  26295  coe11  26312
  Copyright terms: Public domain W3C validator