Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dgrval | Structured version Visualization version GIF version |
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrval.1 | ⊢ 𝐴 = (coeff‘𝐹) |
Ref | Expression |
---|---|
dgrval | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 25361 | . . 3 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | 1 | sseli 3917 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
3 | fveq2 6774 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹)) | |
4 | dgrval.1 | . . . . . . 7 ⊢ 𝐴 = (coeff‘𝐹) | |
5 | 3, 4 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴) |
6 | 5 | cnveqd 5784 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡(coeff‘𝑓) = ◡𝐴) |
7 | 6 | imaeq1d 5968 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡(coeff‘𝑓) “ (ℂ ∖ {0})) = (◡𝐴 “ (ℂ ∖ {0}))) |
8 | 7 | supeq1d 9205 | . . 3 ⊢ (𝑓 = 𝐹 → sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
9 | df-dgr 25352 | . . 3 ⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < )) | |
10 | nn0ssre 12237 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
11 | ltso 11055 | . . . . 5 ⊢ < Or ℝ | |
12 | soss 5523 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
13 | 10, 11, 12 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
14 | 13 | supex 9222 | . . 3 ⊢ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V |
15 | 8, 9, 14 | fvmpt 6875 | . 2 ⊢ (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
16 | 2, 15 | syl 17 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 {csn 4561 Or wor 5502 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 supcsup 9199 ℂcc 10869 ℝcr 10870 0cc0 10871 < clt 11009 ℕ0cn0 12233 Polycply 25345 coeffccoe 25347 degcdgr 25348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-n0 12234 df-ply 25349 df-dgr 25352 |
This theorem is referenced by: dgrcl 25394 dgrub 25395 dgrlb 25397 coe11 25414 |
Copyright terms: Public domain | W3C validator |