![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrval | Structured version Visualization version GIF version |
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrval.1 | ⊢ 𝐴 = (coeff‘𝐹) |
Ref | Expression |
---|---|
dgrval | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 25683 | . . 3 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | 1 | sseli 3976 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
3 | fveq2 6881 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹)) | |
4 | dgrval.1 | . . . . . . 7 ⊢ 𝐴 = (coeff‘𝐹) | |
5 | 3, 4 | eqtr4di 2791 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴) |
6 | 5 | cnveqd 5870 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡(coeff‘𝑓) = ◡𝐴) |
7 | 6 | imaeq1d 6051 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡(coeff‘𝑓) “ (ℂ ∖ {0})) = (◡𝐴 “ (ℂ ∖ {0}))) |
8 | 7 | supeq1d 9428 | . . 3 ⊢ (𝑓 = 𝐹 → sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
9 | df-dgr 25674 | . . 3 ⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < )) | |
10 | nn0ssre 12463 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
11 | ltso 11281 | . . . . 5 ⊢ < Or ℝ | |
12 | soss 5604 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
13 | 10, 11, 12 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
14 | 13 | supex 9445 | . . 3 ⊢ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V |
15 | 8, 9, 14 | fvmpt 6987 | . 2 ⊢ (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
16 | 2, 15 | syl 17 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∖ cdif 3943 ⊆ wss 3946 {csn 4624 Or wor 5583 ◡ccnv 5671 “ cima 5675 ‘cfv 6535 supcsup 9422 ℂcc 11095 ℝcr 11096 0cc0 11097 < clt 11235 ℕ0cn0 12459 Polycply 25667 coeffccoe 25669 degcdgr 25670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-i2m1 11165 ax-1ne0 11166 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-sup 9424 df-pnf 11237 df-mnf 11238 df-ltxr 11240 df-nn 12200 df-n0 12460 df-ply 25671 df-dgr 25674 |
This theorem is referenced by: dgrcl 25716 dgrub 25717 dgrlb 25719 coe11 25736 |
Copyright terms: Public domain | W3C validator |