MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrval Structured version   Visualization version   GIF version

Theorem dgrval 26161
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrval (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))

Proof of Theorem dgrval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 plyssc 26133 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3926 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 fveq2 6828 . . . . . . 7 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
4 dgrval.1 . . . . . . 7 𝐴 = (coeff‘𝐹)
53, 4eqtr4di 2786 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴)
65cnveqd 5819 . . . . 5 (𝑓 = 𝐹(coeff‘𝑓) = 𝐴)
76imaeq1d 6012 . . . 4 (𝑓 = 𝐹 → ((coeff‘𝑓) “ (ℂ ∖ {0})) = (𝐴 “ (ℂ ∖ {0})))
87supeq1d 9337 . . 3 (𝑓 = 𝐹 → sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
9 df-dgr 26124 . . 3 deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ))
10 nn0ssre 12392 . . . . 5 0 ⊆ ℝ
11 ltso 11200 . . . . 5 < Or ℝ
12 soss 5547 . . . . 5 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1310, 11, 12mp2 9 . . . 4 < Or ℕ0
1413supex 9355 . . 3 sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V
158, 9, 14fvmpt 6935 . 2 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
162, 15syl 17 1 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cdif 3895  wss 3898  {csn 4575   Or wor 5526  ccnv 5618  cima 5622  cfv 6486  supcsup 9331  cc 11011  cr 11012  0cc0 11013   < clt 11153  0cn0 12388  Polycply 26117  coeffccoe 26119  degcdgr 26120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-i2m1 11081  ax-1ne0 11082  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-nn 12133  df-n0 12389  df-ply 26121  df-dgr 26124
This theorem is referenced by:  dgrcl  26166  dgrub  26167  dgrlb  26169  coe11  26186
  Copyright terms: Public domain W3C validator