| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrval | Structured version Visualization version GIF version | ||
| Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgrval.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| Ref | Expression |
|---|---|
| dgrval | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyssc 26157 | . . 3 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 2 | 1 | sseli 3954 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
| 3 | fveq2 6876 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹)) | |
| 4 | dgrval.1 | . . . . . . 7 ⊢ 𝐴 = (coeff‘𝐹) | |
| 5 | 3, 4 | eqtr4di 2788 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴) |
| 6 | 5 | cnveqd 5855 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡(coeff‘𝑓) = ◡𝐴) |
| 7 | 6 | imaeq1d 6046 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡(coeff‘𝑓) “ (ℂ ∖ {0})) = (◡𝐴 “ (ℂ ∖ {0}))) |
| 8 | 7 | supeq1d 9458 | . . 3 ⊢ (𝑓 = 𝐹 → sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 9 | df-dgr 26148 | . . 3 ⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < )) | |
| 10 | nn0ssre 12505 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
| 11 | ltso 11315 | . . . . 5 ⊢ < Or ℝ | |
| 12 | soss 5581 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
| 13 | 10, 11, 12 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
| 14 | 13 | supex 9476 | . . 3 ⊢ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V |
| 15 | 8, 9, 14 | fvmpt 6986 | . 2 ⊢ (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 16 | 2, 15 | syl 17 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 Or wor 5560 ◡ccnv 5653 “ cima 5657 ‘cfv 6531 supcsup 9452 ℂcc 11127 ℝcr 11128 0cc0 11129 < clt 11269 ℕ0cn0 12501 Polycply 26141 coeffccoe 26143 degcdgr 26144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-nn 12241 df-n0 12502 df-ply 26145 df-dgr 26148 |
| This theorem is referenced by: dgrcl 26190 dgrub 26191 dgrlb 26193 coe11 26210 |
| Copyright terms: Public domain | W3C validator |