![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrval | Structured version Visualization version GIF version |
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrval.1 | β’ π΄ = (coeffβπΉ) |
Ref | Expression |
---|---|
dgrval | β’ (πΉ β (Polyβπ) β (degβπΉ) = sup((β‘π΄ β (β β {0})), β0, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 25705 | . . 3 β’ (Polyβπ) β (Polyββ) | |
2 | 1 | sseli 3977 | . 2 β’ (πΉ β (Polyβπ) β πΉ β (Polyββ)) |
3 | fveq2 6888 | . . . . . . 7 β’ (π = πΉ β (coeffβπ) = (coeffβπΉ)) | |
4 | dgrval.1 | . . . . . . 7 β’ π΄ = (coeffβπΉ) | |
5 | 3, 4 | eqtr4di 2790 | . . . . . 6 β’ (π = πΉ β (coeffβπ) = π΄) |
6 | 5 | cnveqd 5873 | . . . . 5 β’ (π = πΉ β β‘(coeffβπ) = β‘π΄) |
7 | 6 | imaeq1d 6056 | . . . 4 β’ (π = πΉ β (β‘(coeffβπ) β (β β {0})) = (β‘π΄ β (β β {0}))) |
8 | 7 | supeq1d 9437 | . . 3 β’ (π = πΉ β sup((β‘(coeffβπ) β (β β {0})), β0, < ) = sup((β‘π΄ β (β β {0})), β0, < )) |
9 | df-dgr 25696 | . . 3 β’ deg = (π β (Polyββ) β¦ sup((β‘(coeffβπ) β (β β {0})), β0, < )) | |
10 | nn0ssre 12472 | . . . . 5 β’ β0 β β | |
11 | ltso 11290 | . . . . 5 β’ < Or β | |
12 | soss 5607 | . . . . 5 β’ (β0 β β β ( < Or β β < Or β0)) | |
13 | 10, 11, 12 | mp2 9 | . . . 4 β’ < Or β0 |
14 | 13 | supex 9454 | . . 3 β’ sup((β‘π΄ β (β β {0})), β0, < ) β V |
15 | 8, 9, 14 | fvmpt 6995 | . 2 β’ (πΉ β (Polyββ) β (degβπΉ) = sup((β‘π΄ β (β β {0})), β0, < )) |
16 | 2, 15 | syl 17 | 1 β’ (πΉ β (Polyβπ) β (degβπΉ) = sup((β‘π΄ β (β β {0})), β0, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β cdif 3944 β wss 3947 {csn 4627 Or wor 5586 β‘ccnv 5674 β cima 5678 βcfv 6540 supcsup 9431 βcc 11104 βcr 11105 0cc0 11106 < clt 11244 β0cn0 12468 Polycply 25689 coeffccoe 25691 degcdgr 25692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-i2m1 11174 ax-1ne0 11175 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-nn 12209 df-n0 12469 df-ply 25693 df-dgr 25696 |
This theorem is referenced by: dgrcl 25738 dgrub 25739 dgrlb 25741 coe11 25758 |
Copyright terms: Public domain | W3C validator |