MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrval Structured version   Visualization version   GIF version

Theorem dgrval 24390
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrval (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))

Proof of Theorem dgrval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 plyssc 24362 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3823 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 fveq2 6437 . . . . . . 7 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
4 dgrval.1 . . . . . . 7 𝐴 = (coeff‘𝐹)
53, 4syl6eqr 2879 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴)
65cnveqd 5534 . . . . 5 (𝑓 = 𝐹(coeff‘𝑓) = 𝐴)
76imaeq1d 5710 . . . 4 (𝑓 = 𝐹 → ((coeff‘𝑓) “ (ℂ ∖ {0})) = (𝐴 “ (ℂ ∖ {0})))
87supeq1d 8627 . . 3 (𝑓 = 𝐹 → sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
9 df-dgr 24353 . . 3 deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ))
10 nn0ssre 11629 . . . . 5 0 ⊆ ℝ
11 ltso 10444 . . . . 5 < Or ℝ
12 soss 5284 . . . . 5 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1310, 11, 12mp2 9 . . . 4 < Or ℕ0
1413supex 8644 . . 3 sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V
158, 9, 14fvmpt 6533 . 2 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
162, 15syl 17 1 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  cdif 3795  wss 3798  {csn 4399   Or wor 5264  ccnv 5345  cima 5349  cfv 6127  supcsup 8621  cc 10257  cr 10258  0cc0 10259   < clt 10398  0cn0 11625  Polycply 24346  coeffccoe 24348  degcdgr 24349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-i2m1 10327  ax-1ne0 10328  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-pnf 10400  df-mnf 10401  df-ltxr 10403  df-nn 11358  df-n0 11626  df-ply 24350  df-dgr 24353
This theorem is referenced by:  dgrcl  24395  dgrub  24396  dgrlb  24398  coe11  24415
  Copyright terms: Public domain W3C validator