MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrval Structured version   Visualization version   GIF version

Theorem dgrval 26185
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrval (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))

Proof of Theorem dgrval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 plyssc 26157 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3954 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 fveq2 6876 . . . . . . 7 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
4 dgrval.1 . . . . . . 7 𝐴 = (coeff‘𝐹)
53, 4eqtr4di 2788 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴)
65cnveqd 5855 . . . . 5 (𝑓 = 𝐹(coeff‘𝑓) = 𝐴)
76imaeq1d 6046 . . . 4 (𝑓 = 𝐹 → ((coeff‘𝑓) “ (ℂ ∖ {0})) = (𝐴 “ (ℂ ∖ {0})))
87supeq1d 9458 . . 3 (𝑓 = 𝐹 → sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
9 df-dgr 26148 . . 3 deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ))
10 nn0ssre 12505 . . . . 5 0 ⊆ ℝ
11 ltso 11315 . . . . 5 < Or ℝ
12 soss 5581 . . . . 5 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1310, 11, 12mp2 9 . . . 4 < Or ℕ0
1413supex 9476 . . 3 sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V
158, 9, 14fvmpt 6986 . 2 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
162, 15syl 17 1 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cdif 3923  wss 3926  {csn 4601   Or wor 5560  ccnv 5653  cima 5657  cfv 6531  supcsup 9452  cc 11127  cr 11128  0cc0 11129   < clt 11269  0cn0 12501  Polycply 26141  coeffccoe 26143  degcdgr 26144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-i2m1 11197  ax-1ne0 11198  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-nn 12241  df-n0 12502  df-ply 26145  df-dgr 26148
This theorem is referenced by:  dgrcl  26190  dgrub  26191  dgrlb  26193  coe11  26210
  Copyright terms: Public domain W3C validator