MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco0 Structured version   Visualization version   GIF version

Theorem plyco0 26097
Description: Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyco0 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem plyco0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝐴𝑘) ≠ 0)
2 ffun 6691 . . . . . . . . . . . 12 (𝐴:ℕ0⟶ℂ → Fun 𝐴)
32adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → Fun 𝐴)
4 peano2nn0 12482 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
54adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℕ0)
6 eluznn0 12876 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
76ex 412 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℕ0))
85, 7syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℕ0))
98ssrdv 3952 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (ℤ‘(𝑁 + 1)) ⊆ ℕ0)
10 fdm 6697 . . . . . . . . . . . . 13 (𝐴:ℕ0⟶ℂ → dom 𝐴 = ℕ0)
1110adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → dom 𝐴 = ℕ0)
129, 11sseqtrrd 3984 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴)
13 funfvima2 7205 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
143, 12, 13syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
1514ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
16 nn0z 12554 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1716adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 ∈ ℤ)
1817peano2zd 12641 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℤ)
1918ad2antrr 726 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑁 + 1) ∈ ℤ)
20 nn0z 12554 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
2120ad2antrl 728 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 ∈ ℤ)
22 eluz 12807 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑁 + 1) ≤ 𝑘))
2319, 21, 22syl2anc 584 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑁 + 1) ≤ 𝑘))
24 simplr 768 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2524eleq2d 2814 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))) ↔ (𝐴𝑘) ∈ {0}))
26 fvex 6871 . . . . . . . . . . 11 (𝐴𝑘) ∈ V
2726elsn 4604 . . . . . . . . . 10 ((𝐴𝑘) ∈ {0} ↔ (𝐴𝑘) = 0)
2825, 27bitrdi 287 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))) ↔ (𝐴𝑘) = 0))
2915, 23, 283imtr3d 293 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝑁 + 1) ≤ 𝑘 → (𝐴𝑘) = 0))
3029necon3ad 2938 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ≠ 0 → ¬ (𝑁 + 1) ≤ 𝑘))
311, 30mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ¬ (𝑁 + 1) ≤ 𝑘)
32 nn0re 12451 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3332ad2antrl 728 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 ∈ ℝ)
3418zred 12638 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℝ)
3534ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑁 + 1) ∈ ℝ)
3633, 35ltnled 11321 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑘))
3731, 36mpbird 257 . . . . 5 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 < (𝑁 + 1))
3817ad2antrr 726 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑁 ∈ ℤ)
39 zleltp1 12584 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
4021, 38, 39syl2anc 584 . . . . 5 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘𝑁𝑘 < (𝑁 + 1)))
4137, 40mpbird 257 . . . 4 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘𝑁)
4241expr 456 . . 3 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
4342ralrimiva 3125 . 2 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
44 simpr 484 . . . . . . . 8 ((∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
45 eluznn0 12876 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ ℕ0)
465, 44, 45syl2an 596 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
47 nn0re 12451 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4847adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 ∈ ℝ)
4948adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 ∈ ℝ)
5034adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
5146nn0red 12504 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ ℝ)
5249ltp1d 12113 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 < (𝑁 + 1))
53 eluzle 12806 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑛)
5453ad2antll 729 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑛)
5549, 50, 51, 52, 54ltletrd 11334 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 < 𝑛)
5649, 51ltnled 11321 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 < 𝑛 ↔ ¬ 𝑛𝑁))
5755, 56mpbid 232 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ¬ 𝑛𝑁)
58 fveq2 6858 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
5958neeq1d 2984 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑘) ≠ 0 ↔ (𝐴𝑛) ≠ 0))
60 breq1 5110 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘𝑁𝑛𝑁))
6159, 60imbi12d 344 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴𝑛) ≠ 0 → 𝑛𝑁)))
62 simprl 770 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
6361, 62, 46rspcdva 3589 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ((𝐴𝑛) ≠ 0 → 𝑛𝑁))
6463necon1bd 2943 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (¬ 𝑛𝑁 → (𝐴𝑛) = 0))
6557, 64mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝐴𝑛) = 0)
66 ffn 6688 . . . . . . . . 9 (𝐴:ℕ0⟶ℂ → 𝐴 Fn ℕ0)
6766ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝐴 Fn ℕ0)
68 fniniseg 7032 . . . . . . . 8 (𝐴 Fn ℕ0 → (𝑛 ∈ (𝐴 “ {0}) ↔ (𝑛 ∈ ℕ0 ∧ (𝐴𝑛) = 0)))
6967, 68syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑛 ∈ (𝐴 “ {0}) ↔ (𝑛 ∈ ℕ0 ∧ (𝐴𝑛) = 0)))
7046, 65, 69mpbir2and 713 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ (𝐴 “ {0}))
7170expr 456 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝑛 ∈ (ℤ‘(𝑁 + 1)) → 𝑛 ∈ (𝐴 “ {0})))
7271ssrdv 3952 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0}))
73 funimass3 7026 . . . . . 6 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
743, 12, 73syl2anc 584 . . . . 5 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
7574adantr 480 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
7672, 75mpbird 257 . . 3 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0})
7748ltp1d 12113 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 < (𝑁 + 1))
7848, 34ltnled 11321 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
7977, 78mpbid 232 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ¬ (𝑁 + 1) ≤ 𝑁)
8079adantr 480 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ¬ (𝑁 + 1) ≤ 𝑁)
81 fveq2 6858 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝐴𝑘) = (𝐴‘(𝑁 + 1)))
8281neeq1d 2984 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → ((𝐴𝑘) ≠ 0 ↔ (𝐴‘(𝑁 + 1)) ≠ 0))
83 breq1 5110 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝑘𝑁 ↔ (𝑁 + 1) ≤ 𝑁))
8482, 83imbi12d 344 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁)))
8584rspcva 3586 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁))
865, 85sylan 580 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁))
8786necon1bd 2943 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (¬ (𝑁 + 1) ≤ 𝑁 → (𝐴‘(𝑁 + 1)) = 0))
8880, 87mpd 15 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴‘(𝑁 + 1)) = 0)
89 uzid 12808 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
9018, 89syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
91 funfvima2 7205 . . . . . . . 8 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
923, 12, 91syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
9390, 92mpd 15 . . . . . 6 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9493adantr 480 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9588, 94eqeltrrd 2829 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → 0 ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9695snssd 4773 . . 3 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → {0} ⊆ (𝐴 “ (ℤ‘(𝑁 + 1))))
9776, 96eqssd 3964 . 2 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
9843, 97impbida 800 1 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  {csn 4589   class class class wbr 5107  ccnv 5637  dom cdm 5638  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  0cn0 12442  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794
This theorem is referenced by:  elply2  26101  plyeq0lem  26115  coeeulem  26129  dgrlem  26134  dgrub2  26140  dgrlb  26141  coeeq2  26147  dgrle  26148  coeaddlem  26154  coemullem  26155  coe1termlem  26163  dgreq0  26171  coecj  26184  coecjOLD  26186  basellem2  26992
  Copyright terms: Public domain W3C validator