MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco0 Structured version   Visualization version   GIF version

Theorem plyco0 26251
Description: Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyco0 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem plyco0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝐴𝑘) ≠ 0)
2 ffun 6750 . . . . . . . . . . . 12 (𝐴:ℕ0⟶ℂ → Fun 𝐴)
32adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → Fun 𝐴)
4 peano2nn0 12593 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
54adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℕ0)
6 eluznn0 12982 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
76ex 412 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℕ0))
85, 7syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℕ0))
98ssrdv 4014 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (ℤ‘(𝑁 + 1)) ⊆ ℕ0)
10 fdm 6756 . . . . . . . . . . . . 13 (𝐴:ℕ0⟶ℂ → dom 𝐴 = ℕ0)
1110adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → dom 𝐴 = ℕ0)
129, 11sseqtrrd 4050 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴)
13 funfvima2 7268 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
143, 12, 13syl2anc 583 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
1514ad2antrr 725 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
16 nn0z 12664 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1716adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 ∈ ℤ)
1817peano2zd 12750 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℤ)
1918ad2antrr 725 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑁 + 1) ∈ ℤ)
20 nn0z 12664 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
2120ad2antrl 727 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 ∈ ℤ)
22 eluz 12917 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑁 + 1) ≤ 𝑘))
2319, 21, 22syl2anc 583 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑁 + 1) ≤ 𝑘))
24 simplr 768 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2524eleq2d 2830 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))) ↔ (𝐴𝑘) ∈ {0}))
26 fvex 6933 . . . . . . . . . . 11 (𝐴𝑘) ∈ V
2726elsn 4663 . . . . . . . . . 10 ((𝐴𝑘) ∈ {0} ↔ (𝐴𝑘) = 0)
2825, 27bitrdi 287 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))) ↔ (𝐴𝑘) = 0))
2915, 23, 283imtr3d 293 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝑁 + 1) ≤ 𝑘 → (𝐴𝑘) = 0))
3029necon3ad 2959 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ≠ 0 → ¬ (𝑁 + 1) ≤ 𝑘))
311, 30mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ¬ (𝑁 + 1) ≤ 𝑘)
32 nn0re 12562 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3332ad2antrl 727 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 ∈ ℝ)
3418zred 12747 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℝ)
3534ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑁 + 1) ∈ ℝ)
3633, 35ltnled 11437 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑘))
3731, 36mpbird 257 . . . . 5 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 < (𝑁 + 1))
3817ad2antrr 725 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑁 ∈ ℤ)
39 zleltp1 12694 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
4021, 38, 39syl2anc 583 . . . . 5 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘𝑁𝑘 < (𝑁 + 1)))
4137, 40mpbird 257 . . . 4 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘𝑁)
4241expr 456 . . 3 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
4342ralrimiva 3152 . 2 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
44 simpr 484 . . . . . . . 8 ((∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
45 eluznn0 12982 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ ℕ0)
465, 44, 45syl2an 595 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
47 nn0re 12562 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4847adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 ∈ ℝ)
4948adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 ∈ ℝ)
5034adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
5146nn0red 12614 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ ℝ)
5249ltp1d 12225 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 < (𝑁 + 1))
53 eluzle 12916 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑛)
5453ad2antll 728 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑛)
5549, 50, 51, 52, 54ltletrd 11450 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 < 𝑛)
5649, 51ltnled 11437 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 < 𝑛 ↔ ¬ 𝑛𝑁))
5755, 56mpbid 232 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ¬ 𝑛𝑁)
58 fveq2 6920 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
5958neeq1d 3006 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑘) ≠ 0 ↔ (𝐴𝑛) ≠ 0))
60 breq1 5169 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘𝑁𝑛𝑁))
6159, 60imbi12d 344 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴𝑛) ≠ 0 → 𝑛𝑁)))
62 simprl 770 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
6361, 62, 46rspcdva 3636 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ((𝐴𝑛) ≠ 0 → 𝑛𝑁))
6463necon1bd 2964 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (¬ 𝑛𝑁 → (𝐴𝑛) = 0))
6557, 64mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝐴𝑛) = 0)
66 ffn 6747 . . . . . . . . 9 (𝐴:ℕ0⟶ℂ → 𝐴 Fn ℕ0)
6766ad2antlr 726 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝐴 Fn ℕ0)
68 fniniseg 7093 . . . . . . . 8 (𝐴 Fn ℕ0 → (𝑛 ∈ (𝐴 “ {0}) ↔ (𝑛 ∈ ℕ0 ∧ (𝐴𝑛) = 0)))
6967, 68syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑛 ∈ (𝐴 “ {0}) ↔ (𝑛 ∈ ℕ0 ∧ (𝐴𝑛) = 0)))
7046, 65, 69mpbir2and 712 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ (𝐴 “ {0}))
7170expr 456 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝑛 ∈ (ℤ‘(𝑁 + 1)) → 𝑛 ∈ (𝐴 “ {0})))
7271ssrdv 4014 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0}))
73 funimass3 7087 . . . . . 6 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
743, 12, 73syl2anc 583 . . . . 5 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
7574adantr 480 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
7672, 75mpbird 257 . . 3 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0})
7748ltp1d 12225 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 < (𝑁 + 1))
7848, 34ltnled 11437 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
7977, 78mpbid 232 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ¬ (𝑁 + 1) ≤ 𝑁)
8079adantr 480 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ¬ (𝑁 + 1) ≤ 𝑁)
81 fveq2 6920 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝐴𝑘) = (𝐴‘(𝑁 + 1)))
8281neeq1d 3006 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → ((𝐴𝑘) ≠ 0 ↔ (𝐴‘(𝑁 + 1)) ≠ 0))
83 breq1 5169 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝑘𝑁 ↔ (𝑁 + 1) ≤ 𝑁))
8482, 83imbi12d 344 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁)))
8584rspcva 3633 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁))
865, 85sylan 579 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁))
8786necon1bd 2964 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (¬ (𝑁 + 1) ≤ 𝑁 → (𝐴‘(𝑁 + 1)) = 0))
8880, 87mpd 15 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴‘(𝑁 + 1)) = 0)
89 uzid 12918 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
9018, 89syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
91 funfvima2 7268 . . . . . . . 8 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
923, 12, 91syl2anc 583 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
9390, 92mpd 15 . . . . . 6 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9493adantr 480 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9588, 94eqeltrrd 2845 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → 0 ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9695snssd 4834 . . 3 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → {0} ⊆ (𝐴 “ (ℤ‘(𝑁 + 1))))
9776, 96eqssd 4026 . 2 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
9843, 97impbida 800 1 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  {csn 4648   class class class wbr 5166  ccnv 5699  dom cdm 5700  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  0cn0 12553  cz 12639  cuz 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904
This theorem is referenced by:  elply2  26255  plyeq0lem  26269  coeeulem  26283  dgrlem  26288  dgrub2  26294  dgrlb  26295  coeeq2  26301  dgrle  26302  coeaddlem  26308  coemullem  26309  coe1termlem  26317  dgreq0  26325  coecj  26338  basellem2  27143
  Copyright terms: Public domain W3C validator