MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco0 Structured version   Visualization version   GIF version

Theorem plyco0 24168
Description: Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyco0 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem plyco0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simprr 756 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝐴𝑘) ≠ 0)
2 ffun 6188 . . . . . . . . . . . 12 (𝐴:ℕ0⟶ℂ → Fun 𝐴)
32adantl 467 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → Fun 𝐴)
4 peano2nn0 11535 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
54adantr 466 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℕ0)
6 eluznn0 11960 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
76ex 397 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℕ0))
85, 7syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℕ0))
98ssrdv 3758 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (ℤ‘(𝑁 + 1)) ⊆ ℕ0)
10 fdm 6191 . . . . . . . . . . . . 13 (𝐴:ℕ0⟶ℂ → dom 𝐴 = ℕ0)
1110adantl 467 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → dom 𝐴 = ℕ0)
129, 11sseqtr4d 3791 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴)
13 funfvima2 6636 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
143, 12, 13syl2anc 573 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
1514ad2antrr 705 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
16 nn0z 11602 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1716adantr 466 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 ∈ ℤ)
1817peano2zd 11687 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℤ)
1918ad2antrr 705 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑁 + 1) ∈ ℤ)
20 nn0z 11602 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
2120ad2antrl 707 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 ∈ ℤ)
22 eluz 11902 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑁 + 1) ≤ 𝑘))
2319, 21, 22syl2anc 573 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑁 + 1) ≤ 𝑘))
24 simplr 752 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2524eleq2d 2836 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))) ↔ (𝐴𝑘) ∈ {0}))
26 fvex 6342 . . . . . . . . . . 11 (𝐴𝑘) ∈ V
2726elsn 4331 . . . . . . . . . 10 ((𝐴𝑘) ∈ {0} ↔ (𝐴𝑘) = 0)
2825, 27syl6bb 276 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))) ↔ (𝐴𝑘) = 0))
2915, 23, 283imtr3d 282 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝑁 + 1) ≤ 𝑘 → (𝐴𝑘) = 0))
3029necon3ad 2956 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ≠ 0 → ¬ (𝑁 + 1) ≤ 𝑘))
311, 30mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ¬ (𝑁 + 1) ≤ 𝑘)
32 nn0re 11503 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3332ad2antrl 707 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 ∈ ℝ)
3418zred 11684 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℝ)
3534ad2antrr 705 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑁 + 1) ∈ ℝ)
3633, 35ltnled 10386 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑘))
3731, 36mpbird 247 . . . . 5 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 < (𝑁 + 1))
3817ad2antrr 705 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑁 ∈ ℤ)
39 zleltp1 11630 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
4021, 38, 39syl2anc 573 . . . . 5 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘𝑁𝑘 < (𝑁 + 1)))
4137, 40mpbird 247 . . . 4 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘𝑁)
4241expr 444 . . 3 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
4342ralrimiva 3115 . 2 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
44 simpr 471 . . . . . . . 8 ((∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
45 eluznn0 11960 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ ℕ0)
465, 44, 45syl2an 583 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
47 nn0re 11503 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4847adantr 466 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 ∈ ℝ)
4948adantr 466 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 ∈ ℝ)
5034adantr 466 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
5146nn0red 11554 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ ℝ)
5249ltp1d 11156 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 < (𝑁 + 1))
53 eluzle 11901 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑛)
5453ad2antll 708 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑛)
5549, 50, 51, 52, 54ltletrd 10399 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 < 𝑛)
5649, 51ltnled 10386 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 < 𝑛 ↔ ¬ 𝑛𝑁))
5755, 56mpbid 222 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ¬ 𝑛𝑁)
58 fveq2 6332 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
5958neeq1d 3002 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑘) ≠ 0 ↔ (𝐴𝑛) ≠ 0))
60 breq1 4789 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘𝑁𝑛𝑁))
6159, 60imbi12d 333 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴𝑛) ≠ 0 → 𝑛𝑁)))
62 simprl 754 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
6361, 62, 46rspcdva 3466 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ((𝐴𝑛) ≠ 0 → 𝑛𝑁))
6463necon1bd 2961 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (¬ 𝑛𝑁 → (𝐴𝑛) = 0))
6557, 64mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝐴𝑛) = 0)
66 ffn 6185 . . . . . . . . 9 (𝐴:ℕ0⟶ℂ → 𝐴 Fn ℕ0)
6766ad2antlr 706 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝐴 Fn ℕ0)
68 fniniseg 6481 . . . . . . . 8 (𝐴 Fn ℕ0 → (𝑛 ∈ (𝐴 “ {0}) ↔ (𝑛 ∈ ℕ0 ∧ (𝐴𝑛) = 0)))
6967, 68syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑛 ∈ (𝐴 “ {0}) ↔ (𝑛 ∈ ℕ0 ∧ (𝐴𝑛) = 0)))
7046, 65, 69mpbir2and 692 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ (𝐴 “ {0}))
7170expr 444 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝑛 ∈ (ℤ‘(𝑁 + 1)) → 𝑛 ∈ (𝐴 “ {0})))
7271ssrdv 3758 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0}))
73 funimass3 6476 . . . . . 6 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
743, 12, 73syl2anc 573 . . . . 5 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
7574adantr 466 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
7672, 75mpbird 247 . . 3 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0})
7748ltp1d 11156 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 < (𝑁 + 1))
7848, 34ltnled 10386 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
7977, 78mpbid 222 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ¬ (𝑁 + 1) ≤ 𝑁)
8079adantr 466 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ¬ (𝑁 + 1) ≤ 𝑁)
81 fveq2 6332 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝐴𝑘) = (𝐴‘(𝑁 + 1)))
8281neeq1d 3002 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → ((𝐴𝑘) ≠ 0 ↔ (𝐴‘(𝑁 + 1)) ≠ 0))
83 breq1 4789 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝑘𝑁 ↔ (𝑁 + 1) ≤ 𝑁))
8482, 83imbi12d 333 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁)))
8584rspcva 3458 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁))
865, 85sylan 569 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁))
8786necon1bd 2961 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (¬ (𝑁 + 1) ≤ 𝑁 → (𝐴‘(𝑁 + 1)) = 0))
8880, 87mpd 15 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴‘(𝑁 + 1)) = 0)
89 uzid 11903 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
9018, 89syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
91 funfvima2 6636 . . . . . . . 8 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
923, 12, 91syl2anc 573 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
9390, 92mpd 15 . . . . . 6 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9493adantr 466 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9588, 94eqeltrrd 2851 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → 0 ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9695snssd 4475 . . 3 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → {0} ⊆ (𝐴 “ (ℤ‘(𝑁 + 1))))
9776, 96eqssd 3769 . 2 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
9843, 97impbida 802 1 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wss 3723  {csn 4316   class class class wbr 4786  ccnv 5248  dom cdm 5249  cima 5252  Fun wfun 6025   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   < clt 10276  cle 10277  0cn0 11494  cz 11579  cuz 11888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889
This theorem is referenced by:  elply2  24172  plyeq0lem  24186  coeeulem  24200  dgrlem  24205  dgrub2  24211  dgrlb  24212  coeeq2  24218  dgrle  24219  coeaddlem  24225  coemullem  24226  coe1termlem  24234  dgreq0  24241  coecj  24254  basellem2  25029
  Copyright terms: Public domain W3C validator