MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco0 Structured version   Visualization version   GIF version

Theorem plyco0 25353
Description: Two ways to say that a function on the nonnegative integers has finite support. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyco0 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁

Proof of Theorem plyco0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simprr 770 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝐴𝑘) ≠ 0)
2 ffun 6603 . . . . . . . . . . . 12 (𝐴:ℕ0⟶ℂ → Fun 𝐴)
32adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → Fun 𝐴)
4 peano2nn0 12273 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
54adantr 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℕ0)
6 eluznn0 12657 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
76ex 413 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℕ0))
85, 7syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → 𝑘 ∈ ℕ0))
98ssrdv 3927 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (ℤ‘(𝑁 + 1)) ⊆ ℕ0)
10 fdm 6609 . . . . . . . . . . . . 13 (𝐴:ℕ0⟶ℂ → dom 𝐴 = ℕ0)
1110adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → dom 𝐴 = ℕ0)
129, 11sseqtrrd 3962 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴)
13 funfvima2 7107 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
143, 12, 13syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
1514ad2antrr 723 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
16 nn0z 12343 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1716adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 ∈ ℤ)
1817peano2zd 12429 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℤ)
1918ad2antrr 723 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑁 + 1) ∈ ℤ)
20 nn0z 12343 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
2120ad2antrl 725 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 ∈ ℤ)
22 eluz 12596 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑁 + 1) ≤ 𝑘))
2319, 21, 22syl2anc 584 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 ∈ (ℤ‘(𝑁 + 1)) ↔ (𝑁 + 1) ≤ 𝑘))
24 simplr 766 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2524eleq2d 2824 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))) ↔ (𝐴𝑘) ∈ {0}))
26 fvex 6787 . . . . . . . . . . 11 (𝐴𝑘) ∈ V
2726elsn 4576 . . . . . . . . . 10 ((𝐴𝑘) ∈ {0} ↔ (𝐴𝑘) = 0)
2825, 27bitrdi 287 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))) ↔ (𝐴𝑘) = 0))
2915, 23, 283imtr3d 293 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝑁 + 1) ≤ 𝑘 → (𝐴𝑘) = 0))
3029necon3ad 2956 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ((𝐴𝑘) ≠ 0 → ¬ (𝑁 + 1) ≤ 𝑘))
311, 30mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → ¬ (𝑁 + 1) ≤ 𝑘)
32 nn0re 12242 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3332ad2antrl 725 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 ∈ ℝ)
3418zred 12426 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ ℝ)
3534ad2antrr 723 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑁 + 1) ∈ ℝ)
3633, 35ltnled 11122 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑘))
3731, 36mpbird 256 . . . . 5 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘 < (𝑁 + 1))
3817ad2antrr 723 . . . . . 6 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑁 ∈ ℤ)
39 zleltp1 12371 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘𝑁𝑘 < (𝑁 + 1)))
4021, 38, 39syl2anc 584 . . . . 5 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → (𝑘𝑁𝑘 < (𝑁 + 1)))
4137, 40mpbird 256 . . . 4 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0)) → 𝑘𝑁)
4241expr 457 . . 3 ((((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
4342ralrimiva 3103 . 2 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (𝐴 “ (ℤ‘(𝑁 + 1))) = {0}) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
44 simpr 485 . . . . . . . 8 ((∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ‘(𝑁 + 1)))
45 eluznn0 12657 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ ℕ0)
465, 44, 45syl2an 596 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
47 nn0re 12242 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
4847adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 ∈ ℝ)
4948adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 ∈ ℝ)
5034adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
5146nn0red 12294 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ ℝ)
5249ltp1d 11905 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 < (𝑁 + 1))
53 eluzle 12595 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑛)
5453ad2antll 726 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑛)
5549, 50, 51, 52, 54ltletrd 11135 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑁 < 𝑛)
5649, 51ltnled 11122 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑁 < 𝑛 ↔ ¬ 𝑛𝑁))
5755, 56mpbid 231 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ¬ 𝑛𝑁)
58 fveq2 6774 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
5958neeq1d 3003 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐴𝑘) ≠ 0 ↔ (𝐴𝑛) ≠ 0))
60 breq1 5077 . . . . . . . . . . 11 (𝑘 = 𝑛 → (𝑘𝑁𝑛𝑁))
6159, 60imbi12d 345 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴𝑛) ≠ 0 → 𝑛𝑁)))
62 simprl 768 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
6361, 62, 46rspcdva 3562 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → ((𝐴𝑛) ≠ 0 → 𝑛𝑁))
6463necon1bd 2961 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (¬ 𝑛𝑁 → (𝐴𝑛) = 0))
6557, 64mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝐴𝑛) = 0)
66 ffn 6600 . . . . . . . . 9 (𝐴:ℕ0⟶ℂ → 𝐴 Fn ℕ0)
6766ad2antlr 724 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝐴 Fn ℕ0)
68 fniniseg 6937 . . . . . . . 8 (𝐴 Fn ℕ0 → (𝑛 ∈ (𝐴 “ {0}) ↔ (𝑛 ∈ ℕ0 ∧ (𝐴𝑛) = 0)))
6967, 68syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → (𝑛 ∈ (𝐴 “ {0}) ↔ (𝑛 ∈ ℕ0 ∧ (𝐴𝑛) = 0)))
7046, 65, 69mpbir2and 710 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ (∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁) ∧ 𝑛 ∈ (ℤ‘(𝑁 + 1)))) → 𝑛 ∈ (𝐴 “ {0}))
7170expr 457 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝑛 ∈ (ℤ‘(𝑁 + 1)) → 𝑛 ∈ (𝐴 “ {0})))
7271ssrdv 3927 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0}))
73 funimass3 6931 . . . . . 6 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
743, 12, 73syl2anc 584 . . . . 5 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
7574adantr 481 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0} ↔ (ℤ‘(𝑁 + 1)) ⊆ (𝐴 “ {0})))
7672, 75mpbird 256 . . 3 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴 “ (ℤ‘(𝑁 + 1))) ⊆ {0})
7748ltp1d 11905 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → 𝑁 < (𝑁 + 1))
7848, 34ltnled 11122 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
7977, 78mpbid 231 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ¬ (𝑁 + 1) ≤ 𝑁)
8079adantr 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ¬ (𝑁 + 1) ≤ 𝑁)
81 fveq2 6774 . . . . . . . . . . 11 (𝑘 = (𝑁 + 1) → (𝐴𝑘) = (𝐴‘(𝑁 + 1)))
8281neeq1d 3003 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → ((𝐴𝑘) ≠ 0 ↔ (𝐴‘(𝑁 + 1)) ≠ 0))
83 breq1 5077 . . . . . . . . . 10 (𝑘 = (𝑁 + 1) → (𝑘𝑁 ↔ (𝑁 + 1) ≤ 𝑁))
8482, 83imbi12d 345 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁)))
8584rspcva 3559 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁))
865, 85sylan 580 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → ((𝐴‘(𝑁 + 1)) ≠ 0 → (𝑁 + 1) ≤ 𝑁))
8786necon1bd 2961 . . . . . 6 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (¬ (𝑁 + 1) ≤ 𝑁 → (𝐴‘(𝑁 + 1)) = 0))
8880, 87mpd 15 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴‘(𝑁 + 1)) = 0)
89 uzid 12597 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
9018, 89syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)))
91 funfvima2 7107 . . . . . . . 8 ((Fun 𝐴 ∧ (ℤ‘(𝑁 + 1)) ⊆ dom 𝐴) → ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
923, 12, 91syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝑁 + 1) ∈ (ℤ‘(𝑁 + 1)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1)))))
9390, 92mpd 15 . . . . . 6 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9493adantr 481 . . . . 5 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴‘(𝑁 + 1)) ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9588, 94eqeltrrd 2840 . . . 4 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → 0 ∈ (𝐴 “ (ℤ‘(𝑁 + 1))))
9695snssd 4742 . . 3 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → {0} ⊆ (𝐴 “ (ℤ‘(𝑁 + 1))))
9776, 96eqssd 3938 . 2 (((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) ∧ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
9843, 97impbida 798 1 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  {csn 4561   class class class wbr 5074  ccnv 5588  dom cdm 5589  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  0cn0 12233  cz 12319  cuz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583
This theorem is referenced by:  elply2  25357  plyeq0lem  25371  coeeulem  25385  dgrlem  25390  dgrub2  25396  dgrlb  25397  coeeq2  25403  dgrle  25404  coeaddlem  25410  coemullem  25411  coe1termlem  25419  dgreq0  25426  coecj  25439  basellem2  26231
  Copyright terms: Public domain W3C validator