Detailed syntax breakdown of Definition df-dgraa
Step | Hyp | Ref
| Expression |
1 | | cdgraa 40965 |
. 2
class
degAA |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | caa 25474 |
. . 3
class
𝔸 |
4 | | vp |
. . . . . . . . . 10
setvar 𝑝 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑝 |
6 | | cdgr 25348 |
. . . . . . . . 9
class
deg |
7 | 5, 6 | cfv 6433 |
. . . . . . . 8
class
(deg‘𝑝) |
8 | | vd |
. . . . . . . . 9
setvar 𝑑 |
9 | 8 | cv 1538 |
. . . . . . . 8
class 𝑑 |
10 | 7, 9 | wceq 1539 |
. . . . . . 7
wff
(deg‘𝑝) =
𝑑 |
11 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
12 | 11, 5 | cfv 6433 |
. . . . . . . 8
class (𝑝‘𝑥) |
13 | | cc0 10871 |
. . . . . . . 8
class
0 |
14 | 12, 13 | wceq 1539 |
. . . . . . 7
wff (𝑝‘𝑥) = 0 |
15 | 10, 14 | wa 396 |
. . . . . 6
wff
((deg‘𝑝) =
𝑑 ∧ (𝑝‘𝑥) = 0) |
16 | | cq 12688 |
. . . . . . . 8
class
ℚ |
17 | | cply 25345 |
. . . . . . . 8
class
Poly |
18 | 16, 17 | cfv 6433 |
. . . . . . 7
class
(Poly‘ℚ) |
19 | | c0p 24833 |
. . . . . . . 8
class
0𝑝 |
20 | 19 | csn 4561 |
. . . . . . 7
class
{0𝑝} |
21 | 18, 20 | cdif 3884 |
. . . . . 6
class
((Poly‘ℚ) ∖ {0𝑝}) |
22 | 15, 4, 21 | wrex 3065 |
. . . . 5
wff
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0) |
23 | | cn 11973 |
. . . . 5
class
ℕ |
24 | 22, 8, 23 | crab 3068 |
. . . 4
class {𝑑 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)} |
25 | | cr 10870 |
. . . 4
class
ℝ |
26 | | clt 11009 |
. . . 4
class
< |
27 | 24, 25, 26 | cinf 9200 |
. . 3
class
inf({𝑑 ∈
ℕ ∣ ∃𝑝
∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < ) |
28 | 2, 3, 27 | cmpt 5157 |
. 2
class (𝑥 ∈ 𝔸 ↦
inf({𝑑 ∈ ℕ
∣ ∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) |
29 | 1, 28 | wceq 1539 |
1
wff
degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) |