Detailed syntax breakdown of Definition df-dgraa
| Step | Hyp | Ref
| Expression |
| 1 | | cdgraa 43131 |
. 2
class
degAA |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | caa 26279 |
. . 3
class
𝔸 |
| 4 | | vp |
. . . . . . . . . 10
setvar 𝑝 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑝 |
| 6 | | cdgr 26149 |
. . . . . . . . 9
class
deg |
| 7 | 5, 6 | cfv 6536 |
. . . . . . . 8
class
(deg‘𝑝) |
| 8 | | vd |
. . . . . . . . 9
setvar 𝑑 |
| 9 | 8 | cv 1539 |
. . . . . . . 8
class 𝑑 |
| 10 | 7, 9 | wceq 1540 |
. . . . . . 7
wff
(deg‘𝑝) =
𝑑 |
| 11 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 12 | 11, 5 | cfv 6536 |
. . . . . . . 8
class (𝑝‘𝑥) |
| 13 | | cc0 11134 |
. . . . . . . 8
class
0 |
| 14 | 12, 13 | wceq 1540 |
. . . . . . 7
wff (𝑝‘𝑥) = 0 |
| 15 | 10, 14 | wa 395 |
. . . . . 6
wff
((deg‘𝑝) =
𝑑 ∧ (𝑝‘𝑥) = 0) |
| 16 | | cq 12969 |
. . . . . . . 8
class
ℚ |
| 17 | | cply 26146 |
. . . . . . . 8
class
Poly |
| 18 | 16, 17 | cfv 6536 |
. . . . . . 7
class
(Poly‘ℚ) |
| 19 | | c0p 25627 |
. . . . . . . 8
class
0𝑝 |
| 20 | 19 | csn 4606 |
. . . . . . 7
class
{0𝑝} |
| 21 | 18, 20 | cdif 3928 |
. . . . . 6
class
((Poly‘ℚ) ∖ {0𝑝}) |
| 22 | 15, 4, 21 | wrex 3061 |
. . . . 5
wff
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0) |
| 23 | | cn 12245 |
. . . . 5
class
ℕ |
| 24 | 22, 8, 23 | crab 3420 |
. . . 4
class {𝑑 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)} |
| 25 | | cr 11133 |
. . . 4
class
ℝ |
| 26 | | clt 11274 |
. . . 4
class
< |
| 27 | 24, 25, 26 | cinf 9458 |
. . 3
class
inf({𝑑 ∈
ℕ ∣ ∃𝑝
∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < ) |
| 28 | 2, 3, 27 | cmpt 5206 |
. 2
class (𝑥 ∈ 𝔸 ↦
inf({𝑑 ∈ ℕ
∣ ∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) |
| 29 | 1, 28 | wceq 1540 |
1
wff
degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) |