Detailed syntax breakdown of Definition df-dgraa
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdgraa 43152 | . 2
class
degAA | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | caa 26356 | . . 3
class
𝔸 | 
| 4 |  | vp | . . . . . . . . . 10
setvar 𝑝 | 
| 5 | 4 | cv 1539 | . . . . . . . . 9
class 𝑝 | 
| 6 |  | cdgr 26226 | . . . . . . . . 9
class
deg | 
| 7 | 5, 6 | cfv 6561 | . . . . . . . 8
class
(deg‘𝑝) | 
| 8 |  | vd | . . . . . . . . 9
setvar 𝑑 | 
| 9 | 8 | cv 1539 | . . . . . . . 8
class 𝑑 | 
| 10 | 7, 9 | wceq 1540 | . . . . . . 7
wff
(deg‘𝑝) =
𝑑 | 
| 11 | 2 | cv 1539 | . . . . . . . . 9
class 𝑥 | 
| 12 | 11, 5 | cfv 6561 | . . . . . . . 8
class (𝑝‘𝑥) | 
| 13 |  | cc0 11155 | . . . . . . . 8
class
0 | 
| 14 | 12, 13 | wceq 1540 | . . . . . . 7
wff (𝑝‘𝑥) = 0 | 
| 15 | 10, 14 | wa 395 | . . . . . 6
wff
((deg‘𝑝) =
𝑑 ∧ (𝑝‘𝑥) = 0) | 
| 16 |  | cq 12990 | . . . . . . . 8
class
ℚ | 
| 17 |  | cply 26223 | . . . . . . . 8
class
Poly | 
| 18 | 16, 17 | cfv 6561 | . . . . . . 7
class
(Poly‘ℚ) | 
| 19 |  | c0p 25704 | . . . . . . . 8
class
0𝑝 | 
| 20 | 19 | csn 4626 | . . . . . . 7
class
{0𝑝} | 
| 21 | 18, 20 | cdif 3948 | . . . . . 6
class
((Poly‘ℚ) ∖ {0𝑝}) | 
| 22 | 15, 4, 21 | wrex 3070 | . . . . 5
wff
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0) | 
| 23 |  | cn 12266 | . . . . 5
class
ℕ | 
| 24 | 22, 8, 23 | crab 3436 | . . . 4
class {𝑑 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)} | 
| 25 |  | cr 11154 | . . . 4
class
ℝ | 
| 26 |  | clt 11295 | . . . 4
class 
< | 
| 27 | 24, 25, 26 | cinf 9481 | . . 3
class
inf({𝑑 ∈
ℕ ∣ ∃𝑝
∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < ) | 
| 28 | 2, 3, 27 | cmpt 5225 | . 2
class (𝑥 ∈ 𝔸 ↦
inf({𝑑 ∈ ℕ
∣ ∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) | 
| 29 | 1, 28 | wceq 1540 | 1
wff
degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) |