Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaval Structured version   Visualization version   GIF version

Theorem dgraaval 41876
Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaval (𝐴 ∈ 𝔸 β†’ (degAAβ€˜π΄) = inf({𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π΄) = 0)}, ℝ, < ))
Distinct variable group:   𝐴,𝑑,𝑝

Proof of Theorem dgraaval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6900 . . . . . 6 (π‘Ž = 𝐴 β†’ ((π‘β€˜π‘Ž) = 0 ↔ (π‘β€˜π΄) = 0))
21anbi2d 629 . . . . 5 (π‘Ž = 𝐴 β†’ (((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π‘Ž) = 0) ↔ ((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π΄) = 0)))
32rexbidv 3178 . . . 4 (π‘Ž = 𝐴 β†’ (βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π‘Ž) = 0) ↔ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π΄) = 0)))
43rabbidv 3440 . . 3 (π‘Ž = 𝐴 β†’ {𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π‘Ž) = 0)} = {𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π΄) = 0)})
54infeq1d 9471 . 2 (π‘Ž = 𝐴 β†’ inf({𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π‘Ž) = 0)}, ℝ, < ) = inf({𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π΄) = 0)}, ℝ, < ))
6 df-dgraa 41874 . 2 degAA = (π‘Ž ∈ 𝔸 ↦ inf({𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π‘Ž) = 0)}, ℝ, < ))
7 ltso 11293 . . 3 < Or ℝ
87infex 9487 . 2 inf({𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π΄) = 0)}, ℝ, < ) ∈ V
95, 6, 8fvmpt 6998 1 (𝐴 ∈ 𝔸 β†’ (degAAβ€˜π΄) = inf({𝑑 ∈ β„• ∣ βˆƒπ‘ ∈ ((Polyβ€˜β„š) βˆ– {0𝑝})((degβ€˜π‘) = 𝑑 ∧ (π‘β€˜π΄) = 0)}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432   βˆ– cdif 3945  {csn 4628  β€˜cfv 6543  infcinf 9435  β„cr 11108  0cc0 11109   < clt 11247  β„•cn 12211  β„šcq 12931  0𝑝c0p 25185  Polycply 25697  degcdgr 25700  π”Έcaa 25826  degAAcdgraa 41872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-dgraa 41874
This theorem is referenced by:  dgraalem  41877  dgraaub  41880
  Copyright terms: Public domain W3C validator