![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dgraaval | Structured version Visualization version GIF version |
Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
Ref | Expression |
---|---|
dgraaval | ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6506 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑝‘𝑎) = 0 ↔ (𝑝‘𝐴) = 0)) | |
2 | 1 | anbi2d 620 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0) ↔ ((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0))) |
3 | 2 | rexbidv 3237 | . . . 4 ⊢ (𝑎 = 𝐴 → (∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0))) |
4 | 3 | rabbidv 3398 | . . 3 ⊢ (𝑎 = 𝐴 → {𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0)} = {𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}) |
5 | 4 | infeq1d 8735 | . 2 ⊢ (𝑎 = 𝐴 → inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0)}, ℝ, < ) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) |
6 | df-dgraa 39172 | . 2 ⊢ degAA = (𝑎 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0)}, ℝ, < )) | |
7 | ltso 10520 | . . 3 ⊢ < Or ℝ | |
8 | 7 | infex 8751 | . 2 ⊢ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < ) ∈ V |
9 | 5, 6, 8 | fvmpt 6594 | 1 ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∃wrex 3084 {crab 3087 ∖ cdif 3821 {csn 4436 ‘cfv 6186 infcinf 8699 ℝcr 10333 0cc0 10334 < clt 10473 ℕcn 11438 ℚcq 12161 0𝑝c0p 23989 Polycply 24493 degcdgr 24496 𝔸caa 24622 degAAcdgraa 39170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-resscn 10391 ax-pre-lttri 10408 ax-pre-lttrn 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-po 5323 df-so 5324 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-sup 8700 df-inf 8701 df-pnf 10475 df-mnf 10476 df-ltxr 10478 df-dgraa 39172 |
This theorem is referenced by: dgraalem 39175 dgraaub 39178 |
Copyright terms: Public domain | W3C validator |