Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dgraaval | Structured version Visualization version GIF version |
Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
Ref | Expression |
---|---|
dgraaval | ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6684 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑝‘𝑎) = 0 ↔ (𝑝‘𝐴) = 0)) | |
2 | 1 | anbi2d 632 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0) ↔ ((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0))) |
3 | 2 | rexbidv 3207 | . . . 4 ⊢ (𝑎 = 𝐴 → (∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0))) |
4 | 3 | rabbidv 3381 | . . 3 ⊢ (𝑎 = 𝐴 → {𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0)} = {𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}) |
5 | 4 | infeq1d 9015 | . 2 ⊢ (𝑎 = 𝐴 → inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0)}, ℝ, < ) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) |
6 | df-dgraa 40531 | . 2 ⊢ degAA = (𝑎 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑎) = 0)}, ℝ, < )) | |
7 | ltso 10800 | . . 3 ⊢ < Or ℝ | |
8 | 7 | infex 9031 | . 2 ⊢ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < ) ∈ V |
9 | 5, 6, 8 | fvmpt 6776 | 1 ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∃wrex 3054 {crab 3057 ∖ cdif 3841 {csn 4517 ‘cfv 6340 infcinf 8979 ℝcr 10615 0cc0 10616 < clt 10754 ℕcn 11717 ℚcq 12431 0𝑝c0p 24422 Polycply 24933 degcdgr 24936 𝔸caa 25062 degAAcdgraa 40529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-resscn 10673 ax-pre-lttri 10690 ax-pre-lttrn 10691 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-po 5443 df-so 5444 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-er 8321 df-en 8557 df-dom 8558 df-sdom 8559 df-sup 8980 df-inf 8981 df-pnf 10756 df-mnf 10757 df-ltxr 10759 df-dgraa 40531 |
This theorem is referenced by: dgraalem 40534 dgraaub 40537 |
Copyright terms: Public domain | W3C validator |