![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dgraaval | Structured version Visualization version GIF version |
Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
Ref | Expression |
---|---|
dgraaval | β’ (π΄ β πΈ β (degAAβπ΄) = inf({π β β β£ βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)}, β, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6900 | . . . . . 6 β’ (π = π΄ β ((πβπ) = 0 β (πβπ΄) = 0)) | |
2 | 1 | anbi2d 629 | . . . . 5 β’ (π = π΄ β (((degβπ) = π β§ (πβπ) = 0) β ((degβπ) = π β§ (πβπ΄) = 0))) |
3 | 2 | rexbidv 3178 | . . . 4 β’ (π = π΄ β (βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ) = 0) β βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0))) |
4 | 3 | rabbidv 3440 | . . 3 β’ (π = π΄ β {π β β β£ βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ) = 0)} = {π β β β£ βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)}) |
5 | 4 | infeq1d 9471 | . 2 β’ (π = π΄ β inf({π β β β£ βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ) = 0)}, β, < ) = inf({π β β β£ βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)}, β, < )) |
6 | df-dgraa 41874 | . 2 β’ degAA = (π β πΈ β¦ inf({π β β β£ βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ) = 0)}, β, < )) | |
7 | ltso 11293 | . . 3 β’ < Or β | |
8 | 7 | infex 9487 | . 2 β’ inf({π β β β£ βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)}, β, < ) β V |
9 | 5, 6, 8 | fvmpt 6998 | 1 β’ (π΄ β πΈ β (degAAβπ΄) = inf({π β β β£ βπ β ((Polyββ) β {0π})((degβπ) = π β§ (πβπ΄) = 0)}, β, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 {crab 3432 β cdif 3945 {csn 4628 βcfv 6543 infcinf 9435 βcr 11108 0cc0 11109 < clt 11247 βcn 12211 βcq 12931 0πc0p 25185 Polycply 25697 degcdgr 25700 πΈcaa 25826 degAAcdgraa 41872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-dgraa 41874 |
This theorem is referenced by: dgraalem 41877 dgraaub 41880 |
Copyright terms: Public domain | W3C validator |