Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaval Structured version   Visualization version   GIF version

Theorem dgraaval 40533
Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaval (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝐴) = 0)}, ℝ, < ))
Distinct variable group:   𝐴,𝑑,𝑝

Proof of Theorem dgraaval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fveqeq2 6684 . . . . . 6 (𝑎 = 𝐴 → ((𝑝𝑎) = 0 ↔ (𝑝𝐴) = 0))
21anbi2d 632 . . . . 5 (𝑎 = 𝐴 → (((deg‘𝑝) = 𝑑 ∧ (𝑝𝑎) = 0) ↔ ((deg‘𝑝) = 𝑑 ∧ (𝑝𝐴) = 0)))
32rexbidv 3207 . . . 4 (𝑎 = 𝐴 → (∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝑎) = 0) ↔ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝐴) = 0)))
43rabbidv 3381 . . 3 (𝑎 = 𝐴 → {𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝑎) = 0)} = {𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝐴) = 0)})
54infeq1d 9015 . 2 (𝑎 = 𝐴 → inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝑎) = 0)}, ℝ, < ) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝐴) = 0)}, ℝ, < ))
6 df-dgraa 40531 . 2 degAA = (𝑎 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝑎) = 0)}, ℝ, < ))
7 ltso 10800 . . 3 < Or ℝ
87infex 9031 . 2 inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝐴) = 0)}, ℝ, < ) ∈ V
95, 6, 8fvmpt 6776 1 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝐴) = 0)}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  wrex 3054  {crab 3057  cdif 3841  {csn 4517  cfv 6340  infcinf 8979  cr 10615  0cc0 10616   < clt 10754  cn 11717  cq 12431  0𝑝c0p 24422  Polycply 24933  degcdgr 24936  𝔸caa 25062  degAAcdgraa 40529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-resscn 10673  ax-pre-lttri 10690  ax-pre-lttrn 10691
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-po 5443  df-so 5444  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-sup 8980  df-inf 8981  df-pnf 10756  df-mnf 10757  df-ltxr 10759  df-dgraa 40531
This theorem is referenced by:  dgraalem  40534  dgraaub  40537
  Copyright terms: Public domain W3C validator