Detailed syntax breakdown of Definition df-mpaa
Step | Hyp | Ref
| Expression |
1 | | cmpaa 40486 |
. 2
class
minPolyAA |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | caa 25014 |
. . 3
class
𝔸 |
4 | | vp |
. . . . . . . 8
setvar 𝑝 |
5 | 4 | cv 1537 |
. . . . . . 7
class 𝑝 |
6 | | cdgr 24888 |
. . . . . . 7
class
deg |
7 | 5, 6 | cfv 6339 |
. . . . . 6
class
(deg‘𝑝) |
8 | 2 | cv 1537 |
. . . . . . 7
class 𝑥 |
9 | | cdgraa 40485 |
. . . . . . 7
class
degAA |
10 | 8, 9 | cfv 6339 |
. . . . . 6
class
(degAA‘𝑥) |
11 | 7, 10 | wceq 1538 |
. . . . 5
wff
(deg‘𝑝) =
(degAA‘𝑥) |
12 | 8, 5 | cfv 6339 |
. . . . . 6
class (𝑝‘𝑥) |
13 | | cc0 10580 |
. . . . . 6
class
0 |
14 | 12, 13 | wceq 1538 |
. . . . 5
wff (𝑝‘𝑥) = 0 |
15 | | ccoe 24887 |
. . . . . . . 8
class
coeff |
16 | 5, 15 | cfv 6339 |
. . . . . . 7
class
(coeff‘𝑝) |
17 | 10, 16 | cfv 6339 |
. . . . . 6
class
((coeff‘𝑝)‘(degAA‘𝑥)) |
18 | | c1 10581 |
. . . . . 6
class
1 |
19 | 17, 18 | wceq 1538 |
. . . . 5
wff
((coeff‘𝑝)‘(degAA‘𝑥)) = 1 |
20 | 11, 14, 19 | w3a 1084 |
. . . 4
wff
((deg‘𝑝) =
(degAA‘𝑥)
∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1) |
21 | | cq 12393 |
. . . . 5
class
ℚ |
22 | | cply 24885 |
. . . . 5
class
Poly |
23 | 21, 22 | cfv 6339 |
. . . 4
class
(Poly‘ℚ) |
24 | 20, 4, 23 | crio 7112 |
. . 3
class
(℩𝑝
∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1)) |
25 | 2, 3, 24 | cmpt 5115 |
. 2
class (𝑥 ∈ 𝔸 ↦
(℩𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) |
26 | 1, 25 | wceq 1538 |
1
wff minPolyAA =
(𝑥 ∈ 𝔸 ↦
(℩𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) |