Detailed syntax breakdown of Definition df-mpaa
| Step | Hyp | Ref
| Expression |
| 1 | | cmpaa 43131 |
. 2
class
minPolyAA |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | caa 26346 |
. . 3
class
𝔸 |
| 4 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 6 | | cdgr 26216 |
. . . . . . 7
class
deg |
| 7 | 5, 6 | cfv 6559 |
. . . . . 6
class
(deg‘𝑝) |
| 8 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 9 | | cdgraa 43130 |
. . . . . . 7
class
degAA |
| 10 | 8, 9 | cfv 6559 |
. . . . . 6
class
(degAA‘𝑥) |
| 11 | 7, 10 | wceq 1540 |
. . . . 5
wff
(deg‘𝑝) =
(degAA‘𝑥) |
| 12 | 8, 5 | cfv 6559 |
. . . . . 6
class (𝑝‘𝑥) |
| 13 | | cc0 11151 |
. . . . . 6
class
0 |
| 14 | 12, 13 | wceq 1540 |
. . . . 5
wff (𝑝‘𝑥) = 0 |
| 15 | | ccoe 26215 |
. . . . . . . 8
class
coeff |
| 16 | 5, 15 | cfv 6559 |
. . . . . . 7
class
(coeff‘𝑝) |
| 17 | 10, 16 | cfv 6559 |
. . . . . 6
class
((coeff‘𝑝)‘(degAA‘𝑥)) |
| 18 | | c1 11152 |
. . . . . 6
class
1 |
| 19 | 17, 18 | wceq 1540 |
. . . . 5
wff
((coeff‘𝑝)‘(degAA‘𝑥)) = 1 |
| 20 | 11, 14, 19 | w3a 1087 |
. . . 4
wff
((deg‘𝑝) =
(degAA‘𝑥)
∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1) |
| 21 | | cq 12986 |
. . . . 5
class
ℚ |
| 22 | | cply 26213 |
. . . . 5
class
Poly |
| 23 | 21, 22 | cfv 6559 |
. . . 4
class
(Poly‘ℚ) |
| 24 | 20, 4, 23 | crio 7385 |
. . 3
class
(℩𝑝
∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1)) |
| 25 | 2, 3, 24 | cmpt 5223 |
. 2
class (𝑥 ∈ 𝔸 ↦
(℩𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) |
| 26 | 1, 25 | wceq 1540 |
1
wff minPolyAA =
(𝑥 ∈ 𝔸 ↦
(℩𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) |