Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaf Structured version   Visualization version   GIF version

Theorem dgraaf 41168
Description: Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaf degAA:𝔸⟶ℕ

Proof of Theorem dgraaf
Dummy variables 𝑝 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltso 11105 . . . 4 < Or ℝ
21infex 9300 . . 3 inf({𝑏 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑏 ∧ (𝑝𝑎) = 0)}, ℝ, < ) ∈ V
3 df-dgraa 41163 . . 3 degAA = (𝑎 ∈ 𝔸 ↦ inf({𝑏 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑏 ∧ (𝑝𝑎) = 0)}, ℝ, < ))
42, 3fnmpti 6606 . 2 degAA Fn 𝔸
5 dgraacl 41167 . . 3 (𝑎 ∈ 𝔸 → (degAA𝑎) ∈ ℕ)
65rgen 3063 . 2 𝑎 ∈ 𝔸 (degAA𝑎) ∈ ℕ
7 ffnfv 7024 . 2 (degAA:𝔸⟶ℕ ↔ (degAA Fn 𝔸 ∧ ∀𝑎 ∈ 𝔸 (degAA𝑎) ∈ ℕ))
84, 6, 7mpbir2an 709 1 degAA:𝔸⟶ℕ
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1539  wcel 2104  wral 3061  wrex 3070  {crab 3330  cdif 3889  {csn 4565   Fn wfn 6453  wf 6454  cfv 6458  infcinf 9248  cr 10920  0cc0 10921   < clt 11059  cn 12023  cq 12738  0𝑝c0p 24882  Polycply 25394  degcdgr 25397  𝔸caa 25523  degAAcdgraa 41161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3331  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9249  df-inf 9250  df-oi 9317  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-q 12739  df-rp 12781  df-fz 13290  df-fzo 13433  df-fl 13562  df-mod 13640  df-seq 13772  df-exp 13833  df-hash 14095  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-clim 15246  df-rlim 15247  df-sum 15447  df-0p 24883  df-ply 25398  df-coe 25400  df-dgr 25401  df-aa 25524  df-dgraa 41163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator