| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-dim | Structured version Visualization version GIF version | ||
| Description: Define the dimension of a vector space as the cardinality of its bases. Note that by lvecdim 21159, all bases are equinumerous. (Contributed by Thierry Arnoux, 6-May-2023.) |
| Ref | Expression |
|---|---|
| df-dim | ⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldim 33649 | . 2 class dim | |
| 2 | vf | . . 3 setvar 𝑓 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | chash 14369 | . . . . 5 class ♯ | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑓 |
| 6 | clbs 21073 | . . . . . 6 class LBasis | |
| 7 | 5, 6 | cfv 6561 | . . . . 5 class (LBasis‘𝑓) |
| 8 | 4, 7 | cima 5688 | . . . 4 class (♯ “ (LBasis‘𝑓)) |
| 9 | 8 | cuni 4907 | . . 3 class ∪ (♯ “ (LBasis‘𝑓)) |
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) |
| 11 | 1, 10 | wceq 1540 | 1 wff dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dimval 33651 dimvalfi 33652 |
| Copyright terms: Public domain | W3C validator |