Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimvalfi Structured version   Visualization version   GIF version

Theorem dimvalfi 31355
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 31354 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.)
Hypothesis
Ref Expression
dimval.1 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
dimvalfi ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆))

Proof of Theorem dimvalfi
Dummy variables 𝑡 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3416 . . . 4 (𝐹 ∈ LVec → 𝐹 ∈ V)
2 fveq2 6695 . . . . . . . 8 (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹))
3 dimval.1 . . . . . . . 8 𝐽 = (LBasis‘𝐹)
42, 3eqtr4di 2789 . . . . . . 7 (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽)
54imaeq2d 5914 . . . . . 6 (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
65unieqd 4819 . . . . 5 (𝑓 = 𝐹 (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
7 df-dim 31353 . . . . 5 dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
8 hashf 13869 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
9 ffun 6526 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
103fvexi 6709 . . . . . . . 8 𝐽 ∈ V
1110funimaex 6445 . . . . . . 7 (Fun ♯ → (♯ “ 𝐽) ∈ V)
128, 9, 11mp2b 10 . . . . . 6 (♯ “ 𝐽) ∈ V
1312uniex 7507 . . . . 5 (♯ “ 𝐽) ∈ V
146, 7, 13fvmpt 6796 . . . 4 (𝐹 ∈ V → (dim‘𝐹) = (♯ “ 𝐽))
151, 14syl 17 . . 3 (𝐹 ∈ LVec → (dim‘𝐹) = (♯ “ 𝐽))
16153ad2ant1 1135 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯ “ 𝐽))
17 simpll1 1214 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝐹 ∈ LVec)
18 simpll2 1215 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝐽)
19 simpr 488 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑡𝐽)
20 simpll3 1216 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆 ∈ Fin)
213, 17, 18, 19, 20lvecdimfi 31351 . . . . . . . . 9 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝑡)
22 hasheni 13879 . . . . . . . . 9 (𝑆𝑡 → (♯‘𝑆) = (♯‘𝑡))
2321, 22syl 17 . . . . . . . 8 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → (♯‘𝑆) = (♯‘𝑡))
2423adantr 484 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡))
25 simpr 488 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥)
2624, 25eqtr2d 2772 . . . . . 6 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆))
278, 9ax-mp 5 . . . . . . . 8 Fun ♯
28 fvelima 6756 . . . . . . . 8 ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2927, 28mpan 690 . . . . . . 7 (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
3029adantl 485 . . . . . 6 (((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
3126, 30r19.29a 3198 . . . . 5 (((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆))
3231ralrimiva 3095 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))
33 ne0i 4235 . . . . . . 7 (𝑆𝐽𝐽 ≠ ∅)
34333ad2ant2 1136 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → 𝐽 ≠ ∅)
35 ffn 6523 . . . . . . . . 9 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
368, 35ax-mp 5 . . . . . . . 8 ♯ Fn V
37 ssv 3911 . . . . . . . 8 𝐽 ⊆ V
38 fnimaeq0 6489 . . . . . . . 8 ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅))
3936, 37, 38mp2an 692 . . . . . . 7 ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)
4039necon3bii 2984 . . . . . 6 ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅)
4134, 40sylibr 237 . . . . 5 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) ≠ ∅)
42 eqsn 4728 . . . . 5 ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4341, 42syl 17 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4432, 43mpbird 260 . . 3 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) = {(♯‘𝑆)})
4544unieqd 4819 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) = {(♯‘𝑆)})
46 fvex 6708 . . . 4 (♯‘𝑆) ∈ V
4746unisn 4827 . . 3 {(♯‘𝑆)} = (♯‘𝑆)
4847a1i 11 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → {(♯‘𝑆)} = (♯‘𝑆))
4916, 45, 483eqtrd 2775 1 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  Vcvv 3398  cun 3851  wss 3853  c0 4223  {csn 4527   cuni 4805   class class class wbr 5039  cima 5539  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  cen 8601  Fincfn 8604  +∞cpnf 10829  0cn0 12055  chash 13861  LBasisclbs 20065  LVecclvec 20093  dimcldim 31352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-hash 13862  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-0g 16900  df-mre 17043  df-mrc 17044  df-mri 17045  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-drng 19723  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lbs 20066  df-lvec 20094  df-dim 31353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator