Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimvalfi Structured version   Visualization version   GIF version

Theorem dimvalfi 31687
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 31686 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.)
Hypothesis
Ref Expression
dimval.1 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
dimvalfi ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆))

Proof of Theorem dimvalfi
Dummy variables 𝑡 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . . . 4 (𝐹 ∈ LVec → 𝐹 ∈ V)
2 fveq2 6774 . . . . . . . 8 (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹))
3 dimval.1 . . . . . . . 8 𝐽 = (LBasis‘𝐹)
42, 3eqtr4di 2796 . . . . . . 7 (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽)
54imaeq2d 5969 . . . . . 6 (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
65unieqd 4853 . . . . 5 (𝑓 = 𝐹 (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
7 df-dim 31685 . . . . 5 dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
8 hashf 14052 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
9 ffun 6603 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
103fvexi 6788 . . . . . . . 8 𝐽 ∈ V
1110funimaex 6521 . . . . . . 7 (Fun ♯ → (♯ “ 𝐽) ∈ V)
128, 9, 11mp2b 10 . . . . . 6 (♯ “ 𝐽) ∈ V
1312uniex 7594 . . . . 5 (♯ “ 𝐽) ∈ V
146, 7, 13fvmpt 6875 . . . 4 (𝐹 ∈ V → (dim‘𝐹) = (♯ “ 𝐽))
151, 14syl 17 . . 3 (𝐹 ∈ LVec → (dim‘𝐹) = (♯ “ 𝐽))
16153ad2ant1 1132 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯ “ 𝐽))
17 simpll1 1211 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝐹 ∈ LVec)
18 simpll2 1212 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝐽)
19 simpr 485 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑡𝐽)
20 simpll3 1213 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆 ∈ Fin)
213, 17, 18, 19, 20lvecdimfi 31683 . . . . . . . . 9 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝑡)
22 hasheni 14062 . . . . . . . . 9 (𝑆𝑡 → (♯‘𝑆) = (♯‘𝑡))
2321, 22syl 17 . . . . . . . 8 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → (♯‘𝑆) = (♯‘𝑡))
2423adantr 481 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡))
25 simpr 485 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥)
2624, 25eqtr2d 2779 . . . . . 6 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆))
278, 9ax-mp 5 . . . . . . . 8 Fun ♯
28 fvelima 6835 . . . . . . . 8 ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2927, 28mpan 687 . . . . . . 7 (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
3029adantl 482 . . . . . 6 (((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
3126, 30r19.29a 3218 . . . . 5 (((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆))
3231ralrimiva 3103 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))
33 ne0i 4268 . . . . . . 7 (𝑆𝐽𝐽 ≠ ∅)
34333ad2ant2 1133 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → 𝐽 ≠ ∅)
35 ffn 6600 . . . . . . . . 9 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
368, 35ax-mp 5 . . . . . . . 8 ♯ Fn V
37 ssv 3945 . . . . . . . 8 𝐽 ⊆ V
38 fnimaeq0 6566 . . . . . . . 8 ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅))
3936, 37, 38mp2an 689 . . . . . . 7 ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)
4039necon3bii 2996 . . . . . 6 ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅)
4134, 40sylibr 233 . . . . 5 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) ≠ ∅)
42 eqsn 4762 . . . . 5 ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4341, 42syl 17 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4432, 43mpbird 256 . . 3 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) = {(♯‘𝑆)})
4544unieqd 4853 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) = {(♯‘𝑆)})
46 fvex 6787 . . . 4 (♯‘𝑆) ∈ V
4746unisn 4861 . . 3 {(♯‘𝑆)} = (♯‘𝑆)
4847a1i 11 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → {(♯‘𝑆)} = (♯‘𝑆))
4916, 45, 483eqtrd 2782 1 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cun 3885  wss 3887  c0 4256  {csn 4561   cuni 4839   class class class wbr 5074  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  cfv 6433  cen 8730  Fincfn 8733  +∞cpnf 11006  0cn0 12233  chash 14044  LBasisclbs 20336  LVecclvec 20364  dimcldim 31684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mre 17295  df-mrc 17296  df-mri 17297  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lbs 20337  df-lvec 20365  df-dim 31685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator