| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dimvalfi | Structured version Visualization version GIF version | ||
| Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 33596 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.) |
| Ref | Expression |
|---|---|
| dimval.1 | ⊢ 𝐽 = (LBasis‘𝐹) |
| Ref | Expression |
|---|---|
| dimvalfi | ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . . . 4 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ V) | |
| 2 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹)) | |
| 3 | dimval.1 | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝐹) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽) |
| 5 | 4 | imaeq2d 6031 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽)) |
| 6 | 5 | unieqd 4884 | . . . . 5 ⊢ (𝑓 = 𝐹 → ∪ (♯ “ (LBasis‘𝑓)) = ∪ (♯ “ 𝐽)) |
| 7 | df-dim 33595 | . . . . 5 ⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) | |
| 8 | hashf 14303 | . . . . . . 7 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 9 | ffun 6691 | . . . . . . 7 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
| 10 | 3 | fvexi 6872 | . . . . . . . 8 ⊢ 𝐽 ∈ V |
| 11 | 10 | funimaex 6605 | . . . . . . 7 ⊢ (Fun ♯ → (♯ “ 𝐽) ∈ V) |
| 12 | 8, 9, 11 | mp2b 10 | . . . . . 6 ⊢ (♯ “ 𝐽) ∈ V |
| 13 | 12 | uniex 7717 | . . . . 5 ⊢ ∪ (♯ “ 𝐽) ∈ V |
| 14 | 6, 7, 13 | fvmpt 6968 | . . . 4 ⊢ (𝐹 ∈ V → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
| 15 | 1, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
| 16 | 15 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
| 17 | simpll1 1213 | . . . . . . . . . 10 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝐹 ∈ LVec) | |
| 18 | simpll2 1214 | . . . . . . . . . 10 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
| 19 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑡 ∈ 𝐽) | |
| 20 | simpll3 1215 | . . . . . . . . . 10 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ∈ Fin) | |
| 21 | 3, 17, 18, 19, 20 | lvecdimfi 33591 | . . . . . . . . 9 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ≈ 𝑡) |
| 22 | hasheni 14313 | . . . . . . . . 9 ⊢ (𝑆 ≈ 𝑡 → (♯‘𝑆) = (♯‘𝑡)) | |
| 23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → (♯‘𝑆) = (♯‘𝑡)) |
| 24 | 23 | adantr 480 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡)) |
| 25 | simpr 484 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥) | |
| 26 | 24, 25 | eqtr2d 2765 | . . . . . 6 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆)) |
| 27 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ Fun ♯ |
| 28 | fvelima 6926 | . . . . . . . 8 ⊢ ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) | |
| 29 | 27, 28 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) |
| 30 | 29 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) |
| 31 | 26, 30 | r19.29a 3141 | . . . . 5 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆)) |
| 32 | 31 | ralrimiva 3125 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)) |
| 33 | ne0i 4304 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝐽 ≠ ∅) | |
| 34 | 33 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → 𝐽 ≠ ∅) |
| 35 | ffn 6688 | . . . . . . . . 9 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V) | |
| 36 | 8, 35 | ax-mp 5 | . . . . . . . 8 ⊢ ♯ Fn V |
| 37 | ssv 3971 | . . . . . . . 8 ⊢ 𝐽 ⊆ V | |
| 38 | fnimaeq0 6651 | . . . . . . . 8 ⊢ ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)) | |
| 39 | 36, 37, 38 | mp2an 692 | . . . . . . 7 ⊢ ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅) |
| 40 | 39 | necon3bii 2977 | . . . . . 6 ⊢ ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅) |
| 41 | 34, 40 | sylibr 234 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (♯ “ 𝐽) ≠ ∅) |
| 42 | eqsn 4793 | . . . . 5 ⊢ ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) | |
| 43 | 41, 42 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) |
| 44 | 32, 43 | mpbird 257 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (♯ “ 𝐽) = {(♯‘𝑆)}) |
| 45 | 44 | unieqd 4884 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → ∪ (♯ “ 𝐽) = ∪ {(♯‘𝑆)}) |
| 46 | fvex 6871 | . . . 4 ⊢ (♯‘𝑆) ∈ V | |
| 47 | 46 | unisn 4890 | . . 3 ⊢ ∪ {(♯‘𝑆)} = (♯‘𝑆) |
| 48 | 47 | a1i 11 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → ∪ {(♯‘𝑆)} = (♯‘𝑆)) |
| 49 | 16, 45, 48 | 3eqtrd 2768 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 ∅c0 4296 {csn 4589 ∪ cuni 4871 class class class wbr 5107 “ cima 5641 Fun wfun 6505 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 ≈ cen 8915 Fincfn 8918 +∞cpnf 11205 ℕ0cn0 12442 ♯chash 14295 LBasisclbs 20981 LVecclvec 21009 dimcldim 33594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mre 17547 df-mrc 17548 df-mri 17549 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lbs 20982 df-lvec 21010 df-dim 33595 |
| This theorem is referenced by: ply1degltdim 33619 |
| Copyright terms: Public domain | W3C validator |