Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimvalfi Structured version   Visualization version   GIF version

Theorem dimvalfi 33203
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 33202 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.)
Hypothesis
Ref Expression
dimval.1 𝐽 = (LBasisβ€˜πΉ)
Assertion
Ref Expression
dimvalfi ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ (dimβ€˜πΉ) = (β™―β€˜π‘†))

Proof of Theorem dimvalfi
Dummy variables 𝑑 π‘₯ 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3487 . . . 4 (𝐹 ∈ LVec β†’ 𝐹 ∈ V)
2 fveq2 6884 . . . . . . . 8 (𝑓 = 𝐹 β†’ (LBasisβ€˜π‘“) = (LBasisβ€˜πΉ))
3 dimval.1 . . . . . . . 8 𝐽 = (LBasisβ€˜πΉ)
42, 3eqtr4di 2784 . . . . . . 7 (𝑓 = 𝐹 β†’ (LBasisβ€˜π‘“) = 𝐽)
54imaeq2d 6052 . . . . . 6 (𝑓 = 𝐹 β†’ (β™― β€œ (LBasisβ€˜π‘“)) = (β™― β€œ 𝐽))
65unieqd 4915 . . . . 5 (𝑓 = 𝐹 β†’ βˆͺ (β™― β€œ (LBasisβ€˜π‘“)) = βˆͺ (β™― β€œ 𝐽))
7 df-dim 33201 . . . . 5 dim = (𝑓 ∈ V ↦ βˆͺ (β™― β€œ (LBasisβ€˜π‘“)))
8 hashf 14300 . . . . . . 7 β™―:V⟢(β„•0 βˆͺ {+∞})
9 ffun 6713 . . . . . . 7 (β™―:V⟢(β„•0 βˆͺ {+∞}) β†’ Fun β™―)
103fvexi 6898 . . . . . . . 8 𝐽 ∈ V
1110funimaex 6629 . . . . . . 7 (Fun β™― β†’ (β™― β€œ 𝐽) ∈ V)
128, 9, 11mp2b 10 . . . . . 6 (β™― β€œ 𝐽) ∈ V
1312uniex 7727 . . . . 5 βˆͺ (β™― β€œ 𝐽) ∈ V
146, 7, 13fvmpt 6991 . . . 4 (𝐹 ∈ V β†’ (dimβ€˜πΉ) = βˆͺ (β™― β€œ 𝐽))
151, 14syl 17 . . 3 (𝐹 ∈ LVec β†’ (dimβ€˜πΉ) = βˆͺ (β™― β€œ 𝐽))
16153ad2ant1 1130 . 2 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ (dimβ€˜πΉ) = βˆͺ (β™― β€œ 𝐽))
17 simpll1 1209 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) β†’ 𝐹 ∈ LVec)
18 simpll2 1210 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) β†’ 𝑆 ∈ 𝐽)
19 simpr 484 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) β†’ 𝑑 ∈ 𝐽)
20 simpll3 1211 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) β†’ 𝑆 ∈ Fin)
213, 17, 18, 19, 20lvecdimfi 33199 . . . . . . . . 9 ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) β†’ 𝑆 β‰ˆ 𝑑)
22 hasheni 14310 . . . . . . . . 9 (𝑆 β‰ˆ 𝑑 β†’ (β™―β€˜π‘†) = (β™―β€˜π‘‘))
2321, 22syl 17 . . . . . . . 8 ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) β†’ (β™―β€˜π‘†) = (β™―β€˜π‘‘))
2423adantr 480 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) ∧ (β™―β€˜π‘‘) = π‘₯) β†’ (β™―β€˜π‘†) = (β™―β€˜π‘‘))
25 simpr 484 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) ∧ (β™―β€˜π‘‘) = π‘₯) β†’ (β™―β€˜π‘‘) = π‘₯)
2624, 25eqtr2d 2767 . . . . . 6 (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) ∧ 𝑑 ∈ 𝐽) ∧ (β™―β€˜π‘‘) = π‘₯) β†’ π‘₯ = (β™―β€˜π‘†))
278, 9ax-mp 5 . . . . . . . 8 Fun β™―
28 fvelima 6950 . . . . . . . 8 ((Fun β™― ∧ π‘₯ ∈ (β™― β€œ 𝐽)) β†’ βˆƒπ‘‘ ∈ 𝐽 (β™―β€˜π‘‘) = π‘₯)
2927, 28mpan 687 . . . . . . 7 (π‘₯ ∈ (β™― β€œ 𝐽) β†’ βˆƒπ‘‘ ∈ 𝐽 (β™―β€˜π‘‘) = π‘₯)
3029adantl 481 . . . . . 6 (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) β†’ βˆƒπ‘‘ ∈ 𝐽 (β™―β€˜π‘‘) = π‘₯)
3126, 30r19.29a 3156 . . . . 5 (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ π‘₯ ∈ (β™― β€œ 𝐽)) β†’ π‘₯ = (β™―β€˜π‘†))
3231ralrimiva 3140 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ βˆ€π‘₯ ∈ (β™― β€œ 𝐽)π‘₯ = (β™―β€˜π‘†))
33 ne0i 4329 . . . . . . 7 (𝑆 ∈ 𝐽 β†’ 𝐽 β‰  βˆ…)
34333ad2ant2 1131 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ 𝐽 β‰  βˆ…)
35 ffn 6710 . . . . . . . . 9 (β™―:V⟢(β„•0 βˆͺ {+∞}) β†’ β™― Fn V)
368, 35ax-mp 5 . . . . . . . 8 β™― Fn V
37 ssv 4001 . . . . . . . 8 𝐽 βŠ† V
38 fnimaeq0 6676 . . . . . . . 8 ((β™― Fn V ∧ 𝐽 βŠ† V) β†’ ((β™― β€œ 𝐽) = βˆ… ↔ 𝐽 = βˆ…))
3936, 37, 38mp2an 689 . . . . . . 7 ((β™― β€œ 𝐽) = βˆ… ↔ 𝐽 = βˆ…)
4039necon3bii 2987 . . . . . 6 ((β™― β€œ 𝐽) β‰  βˆ… ↔ 𝐽 β‰  βˆ…)
4134, 40sylibr 233 . . . . 5 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ (β™― β€œ 𝐽) β‰  βˆ…)
42 eqsn 4827 . . . . 5 ((β™― β€œ 𝐽) β‰  βˆ… β†’ ((β™― β€œ 𝐽) = {(β™―β€˜π‘†)} ↔ βˆ€π‘₯ ∈ (β™― β€œ 𝐽)π‘₯ = (β™―β€˜π‘†)))
4341, 42syl 17 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ ((β™― β€œ 𝐽) = {(β™―β€˜π‘†)} ↔ βˆ€π‘₯ ∈ (β™― β€œ 𝐽)π‘₯ = (β™―β€˜π‘†)))
4432, 43mpbird 257 . . 3 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ (β™― β€œ 𝐽) = {(β™―β€˜π‘†)})
4544unieqd 4915 . 2 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ βˆͺ (β™― β€œ 𝐽) = βˆͺ {(β™―β€˜π‘†)})
46 fvex 6897 . . . 4 (β™―β€˜π‘†) ∈ V
4746unisn 4923 . . 3 βˆͺ {(β™―β€˜π‘†)} = (β™―β€˜π‘†)
4847a1i 11 . 2 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ βˆͺ {(β™―β€˜π‘†)} = (β™―β€˜π‘†))
4916, 45, 483eqtrd 2770 1 ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) β†’ (dimβ€˜πΉ) = (β™―β€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064  Vcvv 3468   βˆͺ cun 3941   βŠ† wss 3943  βˆ…c0 4317  {csn 4623  βˆͺ cuni 4902   class class class wbr 5141   β€œ cima 5672  Fun wfun 6530   Fn wfn 6531  βŸΆwf 6532  β€˜cfv 6536   β‰ˆ cen 8935  Fincfn 8938  +∞cpnf 11246  β„•0cn0 12473  β™―chash 14292  LBasisclbs 20919  LVecclvec 20947  dimcldim 33200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8209  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-xnn0 12546  df-z 12560  df-uz 12824  df-hash 14293  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-0g 17393  df-mre 17536  df-mrc 17537  df-mri 17538  df-acs 17539  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-submnd 18711  df-grp 18863  df-minusg 18864  df-sbg 18865  df-subg 19047  df-cmn 19699  df-abl 19700  df-mgp 20037  df-rng 20055  df-ur 20084  df-ring 20137  df-oppr 20233  df-dvdsr 20256  df-unit 20257  df-invr 20287  df-drng 20586  df-lmod 20705  df-lss 20776  df-lsp 20816  df-lbs 20920  df-lvec 20948  df-dim 33201
This theorem is referenced by:  ply1degltdim  33225
  Copyright terms: Public domain W3C validator