Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimvalfi Structured version   Visualization version   GIF version

Theorem dimvalfi 33570
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 33569 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.)
Hypothesis
Ref Expression
dimval.1 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
dimvalfi ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆))

Proof of Theorem dimvalfi
Dummy variables 𝑡 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3465 . . . 4 (𝐹 ∈ LVec → 𝐹 ∈ V)
2 fveq2 6840 . . . . . . . 8 (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹))
3 dimval.1 . . . . . . . 8 𝐽 = (LBasis‘𝐹)
42, 3eqtr4di 2782 . . . . . . 7 (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽)
54imaeq2d 6020 . . . . . 6 (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
65unieqd 4880 . . . . 5 (𝑓 = 𝐹 (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
7 df-dim 33568 . . . . 5 dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
8 hashf 14279 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
9 ffun 6673 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
103fvexi 6854 . . . . . . . 8 𝐽 ∈ V
1110funimaex 6588 . . . . . . 7 (Fun ♯ → (♯ “ 𝐽) ∈ V)
128, 9, 11mp2b 10 . . . . . 6 (♯ “ 𝐽) ∈ V
1312uniex 7697 . . . . 5 (♯ “ 𝐽) ∈ V
146, 7, 13fvmpt 6950 . . . 4 (𝐹 ∈ V → (dim‘𝐹) = (♯ “ 𝐽))
151, 14syl 17 . . 3 (𝐹 ∈ LVec → (dim‘𝐹) = (♯ “ 𝐽))
16153ad2ant1 1133 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯ “ 𝐽))
17 simpll1 1213 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝐹 ∈ LVec)
18 simpll2 1214 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝐽)
19 simpr 484 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑡𝐽)
20 simpll3 1215 . . . . . . . . . 10 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆 ∈ Fin)
213, 17, 18, 19, 20lvecdimfi 33564 . . . . . . . . 9 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝑡)
22 hasheni 14289 . . . . . . . . 9 (𝑆𝑡 → (♯‘𝑆) = (♯‘𝑡))
2321, 22syl 17 . . . . . . . 8 ((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → (♯‘𝑆) = (♯‘𝑡))
2423adantr 480 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡))
25 simpr 484 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥)
2624, 25eqtr2d 2765 . . . . . 6 (((((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆))
278, 9ax-mp 5 . . . . . . . 8 Fun ♯
28 fvelima 6908 . . . . . . . 8 ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2927, 28mpan 690 . . . . . . 7 (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
3029adantl 481 . . . . . 6 (((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
3126, 30r19.29a 3141 . . . . 5 (((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆))
3231ralrimiva 3125 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))
33 ne0i 4300 . . . . . . 7 (𝑆𝐽𝐽 ≠ ∅)
34333ad2ant2 1134 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → 𝐽 ≠ ∅)
35 ffn 6670 . . . . . . . . 9 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
368, 35ax-mp 5 . . . . . . . 8 ♯ Fn V
37 ssv 3968 . . . . . . . 8 𝐽 ⊆ V
38 fnimaeq0 6633 . . . . . . . 8 ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅))
3936, 37, 38mp2an 692 . . . . . . 7 ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)
4039necon3bii 2977 . . . . . 6 ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅)
4134, 40sylibr 234 . . . . 5 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) ≠ ∅)
42 eqsn 4789 . . . . 5 ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4341, 42syl 17 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4432, 43mpbird 257 . . 3 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) = {(♯‘𝑆)})
4544unieqd 4880 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (♯ “ 𝐽) = {(♯‘𝑆)})
46 fvex 6853 . . . 4 (♯‘𝑆) ∈ V
4746unisn 4886 . . 3 {(♯‘𝑆)} = (♯‘𝑆)
4847a1i 11 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → {(♯‘𝑆)} = (♯‘𝑆))
4916, 45, 483eqtrd 2768 1 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cun 3909  wss 3911  c0 4292  {csn 4585   cuni 4867   class class class wbr 5102  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  cen 8892  Fincfn 8895  +∞cpnf 11181  0cn0 12418  chash 14271  LBasisclbs 20957  LVecclvec 20985  dimcldim 33567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-hash 14272  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lbs 20958  df-lvec 20986  df-dim 33568
This theorem is referenced by:  ply1degltdim  33592
  Copyright terms: Public domain W3C validator