Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dimvalfi | Structured version Visualization version GIF version |
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 31588 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.) |
Ref | Expression |
---|---|
dimval.1 | ⊢ 𝐽 = (LBasis‘𝐹) |
Ref | Expression |
---|---|
dimvalfi | ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . . 4 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ V) | |
2 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹)) | |
3 | dimval.1 | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝐹) | |
4 | 2, 3 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽) |
5 | 4 | imaeq2d 5958 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽)) |
6 | 5 | unieqd 4850 | . . . . 5 ⊢ (𝑓 = 𝐹 → ∪ (♯ “ (LBasis‘𝑓)) = ∪ (♯ “ 𝐽)) |
7 | df-dim 31587 | . . . . 5 ⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) | |
8 | hashf 13980 | . . . . . . 7 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
9 | ffun 6587 | . . . . . . 7 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
10 | 3 | fvexi 6770 | . . . . . . . 8 ⊢ 𝐽 ∈ V |
11 | 10 | funimaex 6505 | . . . . . . 7 ⊢ (Fun ♯ → (♯ “ 𝐽) ∈ V) |
12 | 8, 9, 11 | mp2b 10 | . . . . . 6 ⊢ (♯ “ 𝐽) ∈ V |
13 | 12 | uniex 7572 | . . . . 5 ⊢ ∪ (♯ “ 𝐽) ∈ V |
14 | 6, 7, 13 | fvmpt 6857 | . . . 4 ⊢ (𝐹 ∈ V → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
15 | 1, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
16 | 15 | 3ad2ant1 1131 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
17 | simpll1 1210 | . . . . . . . . . 10 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝐹 ∈ LVec) | |
18 | simpll2 1211 | . . . . . . . . . 10 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
19 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑡 ∈ 𝐽) | |
20 | simpll3 1212 | . . . . . . . . . 10 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ∈ Fin) | |
21 | 3, 17, 18, 19, 20 | lvecdimfi 31585 | . . . . . . . . 9 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ≈ 𝑡) |
22 | hasheni 13990 | . . . . . . . . 9 ⊢ (𝑆 ≈ 𝑡 → (♯‘𝑆) = (♯‘𝑡)) | |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → (♯‘𝑆) = (♯‘𝑡)) |
24 | 23 | adantr 480 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡)) |
25 | simpr 484 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥) | |
26 | 24, 25 | eqtr2d 2779 | . . . . . 6 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆)) |
27 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ Fun ♯ |
28 | fvelima 6817 | . . . . . . . 8 ⊢ ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) | |
29 | 27, 28 | mpan 686 | . . . . . . 7 ⊢ (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) |
30 | 29 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) |
31 | 26, 30 | r19.29a 3217 | . . . . 5 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆)) |
32 | 31 | ralrimiva 3107 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)) |
33 | ne0i 4265 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝐽 ≠ ∅) | |
34 | 33 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → 𝐽 ≠ ∅) |
35 | ffn 6584 | . . . . . . . . 9 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V) | |
36 | 8, 35 | ax-mp 5 | . . . . . . . 8 ⊢ ♯ Fn V |
37 | ssv 3941 | . . . . . . . 8 ⊢ 𝐽 ⊆ V | |
38 | fnimaeq0 6550 | . . . . . . . 8 ⊢ ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)) | |
39 | 36, 37, 38 | mp2an 688 | . . . . . . 7 ⊢ ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅) |
40 | 39 | necon3bii 2995 | . . . . . 6 ⊢ ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅) |
41 | 34, 40 | sylibr 233 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (♯ “ 𝐽) ≠ ∅) |
42 | eqsn 4759 | . . . . 5 ⊢ ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) | |
43 | 41, 42 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) |
44 | 32, 43 | mpbird 256 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (♯ “ 𝐽) = {(♯‘𝑆)}) |
45 | 44 | unieqd 4850 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → ∪ (♯ “ 𝐽) = ∪ {(♯‘𝑆)}) |
46 | fvex 6769 | . . . 4 ⊢ (♯‘𝑆) ∈ V | |
47 | 46 | unisn 4858 | . . 3 ⊢ ∪ {(♯‘𝑆)} = (♯‘𝑆) |
48 | 47 | a1i 11 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → ∪ {(♯‘𝑆)} = (♯‘𝑆)) |
49 | 16, 45, 48 | 3eqtrd 2782 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∪ cuni 4836 class class class wbr 5070 “ cima 5583 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ≈ cen 8688 Fincfn 8691 +∞cpnf 10937 ℕ0cn0 12163 ♯chash 13972 LBasisclbs 20251 LVecclvec 20279 dimcldim 31586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mre 17212 df-mrc 17213 df-mri 17214 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lbs 20252 df-lvec 20280 df-dim 31587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |