MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecdim Structured version   Visualization version   GIF version

Theorem lvecdim 21177
Description: The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex 21164 and lbsacsbs 21176 to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd 18617. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
lvecdim.1 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lvecdim ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆𝑇)

Proof of Theorem lvecdim
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 eqid 2735 . . . . 5 (mrCls‘(LSubSp‘𝑊)) = (mrCls‘(LSubSp‘𝑊))
3 eqid 2735 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
41, 2, 3lssacsex 21164 . . . 4 (𝑊 ∈ LVec → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧}))))
543ad2ant1 1132 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧}))))
65simpld 494 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)))
7 eqid 2735 . 2 (mrInd‘(LSubSp‘𝑊)) = (mrInd‘(LSubSp‘𝑊))
85simprd 495 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧})))
9 simp2 1136 . . . 4 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆𝐽)
10 lvecdim.1 . . . . . 6 𝐽 = (LBasis‘𝑊)
111, 2, 3, 7, 10lbsacsbs 21176 . . . . 5 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))))
12113ad2ant1 1132 . . . 4 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (𝑆𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))))
139, 12mpbid 232 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)))
1413simpld 494 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆 ∈ (mrInd‘(LSubSp‘𝑊)))
15 simp3 1137 . . . 4 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑇𝐽)
161, 2, 3, 7, 10lbsacsbs 21176 . . . . 5 (𝑊 ∈ LVec → (𝑇𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))))
17163ad2ant1 1132 . . . 4 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (𝑇𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))))
1815, 17mpbid 232 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)))
1918simpld 494 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑇 ∈ (mrInd‘(LSubSp‘𝑊)))
2013simprd 495 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))
2118simprd 495 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))
2220, 21eqtr4d 2778 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = ((mrCls‘(LSubSp‘𝑊))‘𝑇))
236, 2, 7, 8, 14, 19, 22acsexdimd 18617 1 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cdif 3960  cun 3961  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  cfv 6563  cen 8981  Basecbs 17245  mrClscmrc 17628  mrIndcmri 17629  ACScacs 17630  LSubSpclss 20947  LBasisclbs 21091  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-r1 9802  df-rank 9803  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-tset 17317  df-ple 17318  df-ocomp 17319  df-0g 17488  df-mre 17631  df-mrc 17632  df-mri 17633  df-acs 17634  df-proset 18352  df-drs 18353  df-poset 18371  df-ipo 18586  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lbs 21092  df-lvec 21120
This theorem is referenced by:  dimval  33628
  Copyright terms: Public domain W3C validator