| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecdim | Structured version Visualization version GIF version | ||
| Description: The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex 21069 and lbsacsbs 21081 to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd 18483. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| lvecdim.1 | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lvecdim | ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ≈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (mrCls‘(LSubSp‘𝑊)) = (mrCls‘(LSubSp‘𝑊)) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 1, 2, 3 | lssacsex 21069 | . . . 4 ⊢ (𝑊 ∈ LVec → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧})))) |
| 5 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧})))) |
| 6 | 5 | simpld 494 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊))) |
| 7 | eqid 2729 | . 2 ⊢ (mrInd‘(LSubSp‘𝑊)) = (mrInd‘(LSubSp‘𝑊)) | |
| 8 | 5 | simprd 495 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧}))) |
| 9 | simp2 1137 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
| 10 | lvecdim.1 | . . . . . 6 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 11 | 1, 2, 3, 7, 10 | lbsacsbs 21081 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)))) |
| 12 | 11 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)))) |
| 13 | 9, 12 | mpbid 232 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))) |
| 14 | 13 | simpld 494 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ∈ (mrInd‘(LSubSp‘𝑊))) |
| 15 | simp3 1138 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ 𝐽) | |
| 16 | 1, 2, 3, 7, 10 | lbsacsbs 21081 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑇 ∈ 𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)))) |
| 17 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (𝑇 ∈ 𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)))) |
| 18 | 15, 17 | mpbid 232 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))) |
| 19 | 18 | simpld 494 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ (mrInd‘(LSubSp‘𝑊))) |
| 20 | 13 | simprd 495 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)) |
| 21 | 18 | simprd 495 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)) |
| 22 | 20, 21 | eqtr4d 2767 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = ((mrCls‘(LSubSp‘𝑊))‘𝑇)) |
| 23 | 6, 2, 7, 8, 14, 19, 22 | acsexdimd 18483 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ≈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3902 ∪ cun 3903 𝒫 cpw 4553 {csn 4579 class class class wbr 5095 ‘cfv 6486 ≈ cen 8876 Basecbs 17138 mrClscmrc 17503 mrIndcmri 17504 ACScacs 17505 LSubSpclss 20852 LBasisclbs 20996 LVecclvec 21024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-r1 9679 df-rank 9680 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-tset 17198 df-ple 17199 df-ocomp 17200 df-0g 17363 df-mre 17506 df-mrc 17507 df-mri 17508 df-acs 17509 df-proset 18218 df-drs 18219 df-poset 18237 df-ipo 18452 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lbs 20997 df-lvec 21025 |
| This theorem is referenced by: lbslelsp 33569 dimval 33572 |
| Copyright terms: Public domain | W3C validator |