![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecdim | Structured version Visualization version GIF version |
Description: The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex 21164 and lbsacsbs 21176 to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd 18617. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
lvecdim.1 | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
lvecdim | ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ≈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | eqid 2735 | . . . . 5 ⊢ (mrCls‘(LSubSp‘𝑊)) = (mrCls‘(LSubSp‘𝑊)) | |
3 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 1, 2, 3 | lssacsex 21164 | . . . 4 ⊢ (𝑊 ∈ LVec → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧})))) |
5 | 4 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧})))) |
6 | 5 | simpld 494 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊))) |
7 | eqid 2735 | . 2 ⊢ (mrInd‘(LSubSp‘𝑊)) = (mrInd‘(LSubSp‘𝑊)) | |
8 | 5 | simprd 495 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧}))) |
9 | simp2 1136 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
10 | lvecdim.1 | . . . . . 6 ⊢ 𝐽 = (LBasis‘𝑊) | |
11 | 1, 2, 3, 7, 10 | lbsacsbs 21176 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)))) |
12 | 11 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)))) |
13 | 9, 12 | mpbid 232 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))) |
14 | 13 | simpld 494 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ∈ (mrInd‘(LSubSp‘𝑊))) |
15 | simp3 1137 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ 𝐽) | |
16 | 1, 2, 3, 7, 10 | lbsacsbs 21176 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑇 ∈ 𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)))) |
17 | 16 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (𝑇 ∈ 𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)))) |
18 | 15, 17 | mpbid 232 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))) |
19 | 18 | simpld 494 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ (mrInd‘(LSubSp‘𝑊))) |
20 | 13 | simprd 495 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)) |
21 | 18 | simprd 495 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)) |
22 | 20, 21 | eqtr4d 2778 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = ((mrCls‘(LSubSp‘𝑊))‘𝑇)) |
23 | 6, 2, 7, 8, 14, 19, 22 | acsexdimd 18617 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ≈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∖ cdif 3960 ∪ cun 3961 𝒫 cpw 4605 {csn 4631 class class class wbr 5148 ‘cfv 6563 ≈ cen 8981 Basecbs 17245 mrClscmrc 17628 mrIndcmri 17629 ACScacs 17630 LSubSpclss 20947 LBasisclbs 21091 LVecclvec 21119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 ax-ac2 10501 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-oi 9548 df-r1 9802 df-rank 9803 df-card 9977 df-acn 9980 df-ac 10154 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-tset 17317 df-ple 17318 df-ocomp 17319 df-0g 17488 df-mre 17631 df-mrc 17632 df-mri 17633 df-acs 17634 df-proset 18352 df-drs 18353 df-poset 18371 df-ipo 18586 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lbs 21092 df-lvec 21120 |
This theorem is referenced by: dimval 33628 |
Copyright terms: Public domain | W3C validator |