MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecdim Structured version   Visualization version   GIF version

Theorem lvecdim 20758
Description: The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex 20745 and lbsacsbs 20757 to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd 18508. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
lvecdim.1 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lvecdim ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆𝑇)

Proof of Theorem lvecdim
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 eqid 2733 . . . . 5 (mrCls‘(LSubSp‘𝑊)) = (mrCls‘(LSubSp‘𝑊))
3 eqid 2733 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
41, 2, 3lssacsex 20745 . . . 4 (𝑊 ∈ LVec → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧}))))
543ad2ant1 1134 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧}))))
65simpld 496 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)))
7 eqid 2733 . 2 (mrInd‘(LSubSp‘𝑊)) = (mrInd‘(LSubSp‘𝑊))
85simprd 497 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧})))
9 simp2 1138 . . . 4 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆𝐽)
10 lvecdim.1 . . . . . 6 𝐽 = (LBasis‘𝑊)
111, 2, 3, 7, 10lbsacsbs 20757 . . . . 5 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))))
12113ad2ant1 1134 . . . 4 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (𝑆𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))))
139, 12mpbid 231 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)))
1413simpld 496 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆 ∈ (mrInd‘(LSubSp‘𝑊)))
15 simp3 1139 . . . 4 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑇𝐽)
161, 2, 3, 7, 10lbsacsbs 20757 . . . . 5 (𝑊 ∈ LVec → (𝑇𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))))
17163ad2ant1 1134 . . . 4 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (𝑇𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))))
1815, 17mpbid 231 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)))
1918simpld 496 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑇 ∈ (mrInd‘(LSubSp‘𝑊)))
2013simprd 497 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))
2118simprd 497 . . 3 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))
2220, 21eqtr4d 2776 . 2 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = ((mrCls‘(LSubSp‘𝑊))‘𝑇))
236, 2, 7, 8, 14, 19, 22acsexdimd 18508 1 ((𝑊 ∈ LVec ∧ 𝑆𝐽𝑇𝐽) → 𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  cdif 3944  cun 3945  𝒫 cpw 4601  {csn 4627   class class class wbr 5147  cfv 6540  cen 8932  Basecbs 17140  mrClscmrc 17523  mrIndcmri 17524  ACScacs 17525  LSubSpclss 20530  LBasisclbs 20673  LVecclvec 20701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-reg 9583  ax-inf2 9632  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-r1 9755  df-rank 9756  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-tset 17212  df-ple 17213  df-ocomp 17214  df-0g 17383  df-mre 17526  df-mrc 17527  df-mri 17528  df-acs 17529  df-proset 18244  df-drs 18245  df-poset 18262  df-ipo 18477  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-drng 20306  df-lmod 20461  df-lss 20531  df-lsp 20571  df-lbs 20674  df-lvec 20702
This theorem is referenced by:  dimval  32632
  Copyright terms: Public domain W3C validator