|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dimval | Structured version Visualization version GIF version | ||
| Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.) | 
| Ref | Expression | 
|---|---|
| dimval.1 | ⊢ 𝐽 = (LBasis‘𝐹) | 
| Ref | Expression | 
|---|---|
| dimval | ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = (♯‘𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 3500 | . . . 4 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ V) | |
| 2 | fveq2 6905 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹)) | |
| 3 | dimval.1 | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝐹) | |
| 4 | 2, 3 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽) | 
| 5 | 4 | imaeq2d 6077 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽)) | 
| 6 | 5 | unieqd 4919 | . . . . 5 ⊢ (𝑓 = 𝐹 → ∪ (♯ “ (LBasis‘𝑓)) = ∪ (♯ “ 𝐽)) | 
| 7 | df-dim 33651 | . . . . 5 ⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) | |
| 8 | hashf 14378 | . . . . . . 7 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 9 | ffun 6738 | . . . . . . 7 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
| 10 | 3 | fvexi 6919 | . . . . . . . 8 ⊢ 𝐽 ∈ V | 
| 11 | 10 | funimaex 6654 | . . . . . . 7 ⊢ (Fun ♯ → (♯ “ 𝐽) ∈ V) | 
| 12 | 8, 9, 11 | mp2b 10 | . . . . . 6 ⊢ (♯ “ 𝐽) ∈ V | 
| 13 | 12 | uniex 7762 | . . . . 5 ⊢ ∪ (♯ “ 𝐽) ∈ V | 
| 14 | 6, 7, 13 | fvmpt 7015 | . . . 4 ⊢ (𝐹 ∈ V → (dim‘𝐹) = ∪ (♯ “ 𝐽)) | 
| 15 | 1, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) = ∪ (♯ “ 𝐽)) | 
| 16 | 15 | adantr 480 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = ∪ (♯ “ 𝐽)) | 
| 17 | 3 | lvecdim 21160 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑡 ∈ 𝐽) → 𝑆 ≈ 𝑡) | 
| 18 | 17 | ad4ant124 1173 | . . . . . . . . 9 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ≈ 𝑡) | 
| 19 | hasheni 14388 | . . . . . . . . 9 ⊢ (𝑆 ≈ 𝑡 → (♯‘𝑆) = (♯‘𝑡)) | |
| 20 | 18, 19 | syl 17 | . . . . . . . 8 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → (♯‘𝑆) = (♯‘𝑡)) | 
| 21 | 20 | adantr 480 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡)) | 
| 22 | simpr 484 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥) | |
| 23 | 21, 22 | eqtr2d 2777 | . . . . . 6 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆)) | 
| 24 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ Fun ♯ | 
| 25 | fvelima 6973 | . . . . . . . 8 ⊢ ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) | |
| 26 | 24, 25 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) | 
| 27 | 26 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) | 
| 28 | 23, 27 | r19.29a 3161 | . . . . 5 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆)) | 
| 29 | 28 | ralrimiva 3145 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)) | 
| 30 | ne0i 4340 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝐽 ≠ ∅) | |
| 31 | 30 | adantl 481 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → 𝐽 ≠ ∅) | 
| 32 | ffn 6735 | . . . . . . . . 9 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V) | |
| 33 | 8, 32 | ax-mp 5 | . . . . . . . 8 ⊢ ♯ Fn V | 
| 34 | ssv 4007 | . . . . . . . 8 ⊢ 𝐽 ⊆ V | |
| 35 | fnimaeq0 6700 | . . . . . . . 8 ⊢ ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)) | |
| 36 | 33, 34, 35 | mp2an 692 | . . . . . . 7 ⊢ ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅) | 
| 37 | 36 | necon3bii 2992 | . . . . . 6 ⊢ ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅) | 
| 38 | 31, 37 | sylibr 234 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (♯ “ 𝐽) ≠ ∅) | 
| 39 | eqsn 4828 | . . . . 5 ⊢ ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) | |
| 40 | 38, 39 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) | 
| 41 | 29, 40 | mpbird 257 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)}) | 
| 42 | 41 | unieqd 4919 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∪ (♯ “ 𝐽) = ∪ {(♯‘𝑆)}) | 
| 43 | fvex 6918 | . . . 4 ⊢ (♯‘𝑆) ∈ V | |
| 44 | 43 | unisn 4925 | . . 3 ⊢ ∪ {(♯‘𝑆)} = (♯‘𝑆) | 
| 45 | 44 | a1i 11 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∪ {(♯‘𝑆)} = (♯‘𝑆)) | 
| 46 | 16, 42, 45 | 3eqtrd 2780 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = (♯‘𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 Vcvv 3479 ∪ cun 3948 ⊆ wss 3950 ∅c0 4332 {csn 4625 ∪ cuni 4906 class class class wbr 5142 “ cima 5687 Fun wfun 6554 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 ≈ cen 8983 +∞cpnf 11293 ℕ0cn0 12528 ♯chash 14370 LBasisclbs 21074 LVecclvec 21102 dimcldim 33650 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-reg 9633 ax-inf2 9682 ax-ac2 10504 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-oi 9551 df-r1 9805 df-rank 9806 df-card 9980 df-acn 9983 df-ac 10157 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-xnn0 12602 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-tset 17317 df-ple 17318 df-ocomp 17319 df-0g 17487 df-mre 17630 df-mrc 17631 df-mri 17632 df-acs 17633 df-proset 18341 df-drs 18342 df-poset 18360 df-ipo 18574 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-drng 20732 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lbs 21075 df-lvec 21103 df-dim 33651 | 
| This theorem is referenced by: dimcl 33654 lmimdim 33655 lvecdim0i 33657 lvecdim0 33658 lssdimle 33659 dimpropd 33660 rlmdim 33661 rgmoddimOLD 33662 frlmdim 33663 lsatdim 33669 dimkerim 33679 fedgmul 33683 dimlssid 33684 extdg1id 33717 ccfldextdgrr 33723 fldextrspunlem1 33726 | 
| Copyright terms: Public domain | W3C validator |