Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimval Structured version   Visualization version   GIF version

Theorem dimval 33628
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.)
Hypothesis
Ref Expression
dimval.1 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
dimval ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯‘𝑆))

Proof of Theorem dimval
Dummy variables 𝑡 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3499 . . . 4 (𝐹 ∈ LVec → 𝐹 ∈ V)
2 fveq2 6907 . . . . . . . 8 (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹))
3 dimval.1 . . . . . . . 8 𝐽 = (LBasis‘𝐹)
42, 3eqtr4di 2793 . . . . . . 7 (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽)
54imaeq2d 6080 . . . . . 6 (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
65unieqd 4925 . . . . 5 (𝑓 = 𝐹 (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
7 df-dim 33627 . . . . 5 dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
8 hashf 14374 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
9 ffun 6740 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
103fvexi 6921 . . . . . . . 8 𝐽 ∈ V
1110funimaex 6656 . . . . . . 7 (Fun ♯ → (♯ “ 𝐽) ∈ V)
128, 9, 11mp2b 10 . . . . . 6 (♯ “ 𝐽) ∈ V
1312uniex 7760 . . . . 5 (♯ “ 𝐽) ∈ V
146, 7, 13fvmpt 7016 . . . 4 (𝐹 ∈ V → (dim‘𝐹) = (♯ “ 𝐽))
151, 14syl 17 . . 3 (𝐹 ∈ LVec → (dim‘𝐹) = (♯ “ 𝐽))
1615adantr 480 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯ “ 𝐽))
173lvecdim 21177 . . . . . . . . . 10 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑡𝐽) → 𝑆𝑡)
1817ad4ant124 1172 . . . . . . . . 9 ((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝑡)
19 hasheni 14384 . . . . . . . . 9 (𝑆𝑡 → (♯‘𝑆) = (♯‘𝑡))
2018, 19syl 17 . . . . . . . 8 ((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → (♯‘𝑆) = (♯‘𝑡))
2120adantr 480 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡))
22 simpr 484 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥)
2321, 22eqtr2d 2776 . . . . . 6 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆))
248, 9ax-mp 5 . . . . . . . 8 Fun ♯
25 fvelima 6974 . . . . . . . 8 ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2624, 25mpan 690 . . . . . . 7 (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2726adantl 481 . . . . . 6 (((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2823, 27r19.29a 3160 . . . . 5 (((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆))
2928ralrimiva 3144 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))
30 ne0i 4347 . . . . . . 7 (𝑆𝐽𝐽 ≠ ∅)
3130adantl 481 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → 𝐽 ≠ ∅)
32 ffn 6737 . . . . . . . . 9 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
338, 32ax-mp 5 . . . . . . . 8 ♯ Fn V
34 ssv 4020 . . . . . . . 8 𝐽 ⊆ V
35 fnimaeq0 6702 . . . . . . . 8 ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅))
3633, 34, 35mp2an 692 . . . . . . 7 ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)
3736necon3bii 2991 . . . . . 6 ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅)
3831, 37sylibr 234 . . . . 5 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) ≠ ∅)
39 eqsn 4834 . . . . 5 ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4038, 39syl 17 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4129, 40mpbird 257 . . 3 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)})
4241unieqd 4925 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)})
43 fvex 6920 . . . 4 (♯‘𝑆) ∈ V
4443unisn 4931 . . 3 {(♯‘𝑆)} = (♯‘𝑆)
4544a1i 11 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → {(♯‘𝑆)} = (♯‘𝑆))
4616, 42, 453eqtrd 2779 1 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cun 3961  wss 3963  c0 4339  {csn 4631   cuni 4912   class class class wbr 5148  cima 5692  Fun wfun 6557   Fn wfn 6558  wf 6559  cfv 6563  cen 8981  +∞cpnf 11290  0cn0 12524  chash 14366  LBasisclbs 21091  LVecclvec 21119  dimcldim 33626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-r1 9802  df-rank 9803  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-tset 17317  df-ple 17318  df-ocomp 17319  df-0g 17488  df-mre 17631  df-mrc 17632  df-mri 17633  df-acs 17634  df-proset 18352  df-drs 18353  df-poset 18371  df-ipo 18586  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lbs 21092  df-lvec 21120  df-dim 33627
This theorem is referenced by:  dimcl  33630  lmimdim  33631  lvecdim0i  33633  lvecdim0  33634  lssdimle  33635  dimpropd  33636  rlmdim  33637  rgmoddimOLD  33638  frlmdim  33639  lsatdim  33645  dimkerim  33655  fedgmul  33659  dimlssid  33660  extdg1id  33691  ccfldextdgrr  33697
  Copyright terms: Public domain W3C validator