Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimval Structured version   Visualization version   GIF version

Theorem dimval 32300
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.)
Hypothesis
Ref Expression
dimval.1 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
dimval ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯‘𝑆))

Proof of Theorem dimval
Dummy variables 𝑡 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3463 . . . 4 (𝐹 ∈ LVec → 𝐹 ∈ V)
2 fveq2 6842 . . . . . . . 8 (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹))
3 dimval.1 . . . . . . . 8 𝐽 = (LBasis‘𝐹)
42, 3eqtr4di 2794 . . . . . . 7 (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽)
54imaeq2d 6013 . . . . . 6 (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
65unieqd 4879 . . . . 5 (𝑓 = 𝐹 (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
7 df-dim 32299 . . . . 5 dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
8 hashf 14238 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
9 ffun 6671 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
103fvexi 6856 . . . . . . . 8 𝐽 ∈ V
1110funimaex 6589 . . . . . . 7 (Fun ♯ → (♯ “ 𝐽) ∈ V)
128, 9, 11mp2b 10 . . . . . 6 (♯ “ 𝐽) ∈ V
1312uniex 7678 . . . . 5 (♯ “ 𝐽) ∈ V
146, 7, 13fvmpt 6948 . . . 4 (𝐹 ∈ V → (dim‘𝐹) = (♯ “ 𝐽))
151, 14syl 17 . . 3 (𝐹 ∈ LVec → (dim‘𝐹) = (♯ “ 𝐽))
1615adantr 481 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯ “ 𝐽))
173lvecdim 20618 . . . . . . . . . 10 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑡𝐽) → 𝑆𝑡)
1817ad4ant124 1173 . . . . . . . . 9 ((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝑡)
19 hasheni 14248 . . . . . . . . 9 (𝑆𝑡 → (♯‘𝑆) = (♯‘𝑡))
2018, 19syl 17 . . . . . . . 8 ((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → (♯‘𝑆) = (♯‘𝑡))
2120adantr 481 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡))
22 simpr 485 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥)
2321, 22eqtr2d 2777 . . . . . 6 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆))
248, 9ax-mp 5 . . . . . . . 8 Fun ♯
25 fvelima 6908 . . . . . . . 8 ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2624, 25mpan 688 . . . . . . 7 (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2726adantl 482 . . . . . 6 (((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2823, 27r19.29a 3159 . . . . 5 (((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆))
2928ralrimiva 3143 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))
30 ne0i 4294 . . . . . . 7 (𝑆𝐽𝐽 ≠ ∅)
3130adantl 482 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → 𝐽 ≠ ∅)
32 ffn 6668 . . . . . . . . 9 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
338, 32ax-mp 5 . . . . . . . 8 ♯ Fn V
34 ssv 3968 . . . . . . . 8 𝐽 ⊆ V
35 fnimaeq0 6634 . . . . . . . 8 ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅))
3633, 34, 35mp2an 690 . . . . . . 7 ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)
3736necon3bii 2996 . . . . . 6 ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅)
3831, 37sylibr 233 . . . . 5 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) ≠ ∅)
39 eqsn 4789 . . . . 5 ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4038, 39syl 17 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4129, 40mpbird 256 . . 3 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)})
4241unieqd 4879 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)})
43 fvex 6855 . . . 4 (♯‘𝑆) ∈ V
4443unisn 4887 . . 3 {(♯‘𝑆)} = (♯‘𝑆)
4544a1i 11 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → {(♯‘𝑆)} = (♯‘𝑆))
4616, 42, 453eqtrd 2780 1 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cun 3908  wss 3910  c0 4282  {csn 4586   cuni 4865   class class class wbr 5105  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  cen 8880  +∞cpnf 11186  0cn0 12413  chash 14230  LBasisclbs 20535  LVecclvec 20563  dimcldim 32298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-oi 9446  df-r1 9700  df-rank 9701  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-tset 17152  df-ple 17153  df-ocomp 17154  df-0g 17323  df-mre 17466  df-mrc 17467  df-mri 17468  df-acs 17469  df-proset 18184  df-drs 18185  df-poset 18202  df-ipo 18417  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lbs 20536  df-lvec 20564  df-dim 32299
This theorem is referenced by:  dimcl  32302  lvecdim0i  32303  lvecdim0  32304  lssdimle  32305  dimpropd  32306  rgmoddim  32307  frlmdim  32308  lsatdim  32314  dimkerim  32322  fedgmul  32326  extdg1id  32352  ccfldextdgrr  32356
  Copyright terms: Public domain W3C validator