| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dimval | Structured version Visualization version GIF version | ||
| Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.) |
| Ref | Expression |
|---|---|
| dimval.1 | ⊢ 𝐽 = (LBasis‘𝐹) |
| Ref | Expression |
|---|---|
| dimval | ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = (♯‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . . . 4 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ V) | |
| 2 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹)) | |
| 3 | dimval.1 | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝐹) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽) |
| 5 | 4 | imaeq2d 6034 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽)) |
| 6 | 5 | unieqd 4887 | . . . . 5 ⊢ (𝑓 = 𝐹 → ∪ (♯ “ (LBasis‘𝑓)) = ∪ (♯ “ 𝐽)) |
| 7 | df-dim 33602 | . . . . 5 ⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) | |
| 8 | hashf 14310 | . . . . . . 7 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 9 | ffun 6694 | . . . . . . 7 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
| 10 | 3 | fvexi 6875 | . . . . . . . 8 ⊢ 𝐽 ∈ V |
| 11 | 10 | funimaex 6608 | . . . . . . 7 ⊢ (Fun ♯ → (♯ “ 𝐽) ∈ V) |
| 12 | 8, 9, 11 | mp2b 10 | . . . . . 6 ⊢ (♯ “ 𝐽) ∈ V |
| 13 | 12 | uniex 7720 | . . . . 5 ⊢ ∪ (♯ “ 𝐽) ∈ V |
| 14 | 6, 7, 13 | fvmpt 6971 | . . . 4 ⊢ (𝐹 ∈ V → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
| 15 | 1, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
| 16 | 15 | adantr 480 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
| 17 | 3 | lvecdim 21074 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑡 ∈ 𝐽) → 𝑆 ≈ 𝑡) |
| 18 | 17 | ad4ant124 1174 | . . . . . . . . 9 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ≈ 𝑡) |
| 19 | hasheni 14320 | . . . . . . . . 9 ⊢ (𝑆 ≈ 𝑡 → (♯‘𝑆) = (♯‘𝑡)) | |
| 20 | 18, 19 | syl 17 | . . . . . . . 8 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → (♯‘𝑆) = (♯‘𝑡)) |
| 21 | 20 | adantr 480 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡)) |
| 22 | simpr 484 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥) | |
| 23 | 21, 22 | eqtr2d 2766 | . . . . . 6 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆)) |
| 24 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ Fun ♯ |
| 25 | fvelima 6929 | . . . . . . . 8 ⊢ ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) | |
| 26 | 24, 25 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) |
| 27 | 26 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) |
| 28 | 23, 27 | r19.29a 3142 | . . . . 5 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆)) |
| 29 | 28 | ralrimiva 3126 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)) |
| 30 | ne0i 4307 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝐽 ≠ ∅) | |
| 31 | 30 | adantl 481 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → 𝐽 ≠ ∅) |
| 32 | ffn 6691 | . . . . . . . . 9 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V) | |
| 33 | 8, 32 | ax-mp 5 | . . . . . . . 8 ⊢ ♯ Fn V |
| 34 | ssv 3974 | . . . . . . . 8 ⊢ 𝐽 ⊆ V | |
| 35 | fnimaeq0 6654 | . . . . . . . 8 ⊢ ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)) | |
| 36 | 33, 34, 35 | mp2an 692 | . . . . . . 7 ⊢ ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅) |
| 37 | 36 | necon3bii 2978 | . . . . . 6 ⊢ ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅) |
| 38 | 31, 37 | sylibr 234 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (♯ “ 𝐽) ≠ ∅) |
| 39 | eqsn 4796 | . . . . 5 ⊢ ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) | |
| 40 | 38, 39 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) |
| 41 | 29, 40 | mpbird 257 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)}) |
| 42 | 41 | unieqd 4887 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∪ (♯ “ 𝐽) = ∪ {(♯‘𝑆)}) |
| 43 | fvex 6874 | . . . 4 ⊢ (♯‘𝑆) ∈ V | |
| 44 | 43 | unisn 4893 | . . 3 ⊢ ∪ {(♯‘𝑆)} = (♯‘𝑆) |
| 45 | 44 | a1i 11 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∪ {(♯‘𝑆)} = (♯‘𝑆)) |
| 46 | 16, 42, 45 | 3eqtrd 2769 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = (♯‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 ∅c0 4299 {csn 4592 ∪ cuni 4874 class class class wbr 5110 “ cima 5644 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 ≈ cen 8918 +∞cpnf 11212 ℕ0cn0 12449 ♯chash 14302 LBasisclbs 20988 LVecclvec 21016 dimcldim 33601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-oi 9470 df-r1 9724 df-rank 9725 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ocomp 17248 df-0g 17411 df-mre 17554 df-mrc 17555 df-mri 17556 df-acs 17557 df-proset 18262 df-drs 18263 df-poset 18281 df-ipo 18494 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lbs 20989 df-lvec 21017 df-dim 33602 |
| This theorem is referenced by: dimcl 33605 lmimdim 33606 lvecdim0i 33608 lvecdim0 33609 lssdimle 33610 dimpropd 33611 rlmdim 33612 rgmoddimOLD 33613 frlmdim 33614 lsatdim 33620 dimkerim 33630 fedgmul 33634 dimlssid 33635 extdg1id 33668 ccfldextdgrr 33674 fldextrspunlem1 33677 |
| Copyright terms: Public domain | W3C validator |