Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dimval | Structured version Visualization version GIF version |
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.) |
Ref | Expression |
---|---|
dimval.1 | ⊢ 𝐽 = (LBasis‘𝐹) |
Ref | Expression |
---|---|
dimval | ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = (♯‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3426 | . . . 4 ⊢ (𝐹 ∈ LVec → 𝐹 ∈ V) | |
2 | fveq2 6717 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹)) | |
3 | dimval.1 | . . . . . . . 8 ⊢ 𝐽 = (LBasis‘𝐹) | |
4 | 2, 3 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽) |
5 | 4 | imaeq2d 5929 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽)) |
6 | 5 | unieqd 4833 | . . . . 5 ⊢ (𝑓 = 𝐹 → ∪ (♯ “ (LBasis‘𝑓)) = ∪ (♯ “ 𝐽)) |
7 | df-dim 31399 | . . . . 5 ⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) | |
8 | hashf 13904 | . . . . . . 7 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
9 | ffun 6548 | . . . . . . 7 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯) | |
10 | 3 | fvexi 6731 | . . . . . . . 8 ⊢ 𝐽 ∈ V |
11 | 10 | funimaex 6467 | . . . . . . 7 ⊢ (Fun ♯ → (♯ “ 𝐽) ∈ V) |
12 | 8, 9, 11 | mp2b 10 | . . . . . 6 ⊢ (♯ “ 𝐽) ∈ V |
13 | 12 | uniex 7529 | . . . . 5 ⊢ ∪ (♯ “ 𝐽) ∈ V |
14 | 6, 7, 13 | fvmpt 6818 | . . . 4 ⊢ (𝐹 ∈ V → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
15 | 1, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ LVec → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
16 | 15 | adantr 484 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = ∪ (♯ “ 𝐽)) |
17 | 3 | lvecdim 20194 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑡 ∈ 𝐽) → 𝑆 ≈ 𝑡) |
18 | 17 | ad4ant124 1175 | . . . . . . . . 9 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → 𝑆 ≈ 𝑡) |
19 | hasheni 13914 | . . . . . . . . 9 ⊢ (𝑆 ≈ 𝑡 → (♯‘𝑆) = (♯‘𝑡)) | |
20 | 18, 19 | syl 17 | . . . . . . . 8 ⊢ ((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) → (♯‘𝑆) = (♯‘𝑡)) |
21 | 20 | adantr 484 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡)) |
22 | simpr 488 | . . . . . . 7 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥) | |
23 | 21, 22 | eqtr2d 2778 | . . . . . 6 ⊢ (((((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡 ∈ 𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆)) |
24 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ Fun ♯ |
25 | fvelima 6778 | . . . . . . . 8 ⊢ ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) | |
26 | 24, 25 | mpan 690 | . . . . . . 7 ⊢ (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) |
27 | 26 | adantl 485 | . . . . . 6 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡 ∈ 𝐽 (♯‘𝑡) = 𝑥) |
28 | 23, 27 | r19.29a 3208 | . . . . 5 ⊢ (((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆)) |
29 | 28 | ralrimiva 3105 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)) |
30 | ne0i 4249 | . . . . . . 7 ⊢ (𝑆 ∈ 𝐽 → 𝐽 ≠ ∅) | |
31 | 30 | adantl 485 | . . . . . 6 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → 𝐽 ≠ ∅) |
32 | ffn 6545 | . . . . . . . . 9 ⊢ (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V) | |
33 | 8, 32 | ax-mp 5 | . . . . . . . 8 ⊢ ♯ Fn V |
34 | ssv 3925 | . . . . . . . 8 ⊢ 𝐽 ⊆ V | |
35 | fnimaeq0 6511 | . . . . . . . 8 ⊢ ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)) | |
36 | 33, 34, 35 | mp2an 692 | . . . . . . 7 ⊢ ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅) |
37 | 36 | necon3bii 2993 | . . . . . 6 ⊢ ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅) |
38 | 31, 37 | sylibr 237 | . . . . 5 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (♯ “ 𝐽) ≠ ∅) |
39 | eqsn 4742 | . . . . 5 ⊢ ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) | |
40 | 38, 39 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))) |
41 | 29, 40 | mpbird 260 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)}) |
42 | 41 | unieqd 4833 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∪ (♯ “ 𝐽) = ∪ {(♯‘𝑆)}) |
43 | fvex 6730 | . . . 4 ⊢ (♯‘𝑆) ∈ V | |
44 | 43 | unisn 4841 | . . 3 ⊢ ∪ {(♯‘𝑆)} = (♯‘𝑆) |
45 | 44 | a1i 11 | . 2 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → ∪ {(♯‘𝑆)} = (♯‘𝑆)) |
46 | 16, 42, 45 | 3eqtrd 2781 | 1 ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (dim‘𝐹) = (♯‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∃wrex 3062 Vcvv 3408 ∪ cun 3864 ⊆ wss 3866 ∅c0 4237 {csn 4541 ∪ cuni 4819 class class class wbr 5053 “ cima 5554 Fun wfun 6374 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 ≈ cen 8623 +∞cpnf 10864 ℕ0cn0 12090 ♯chash 13896 LBasisclbs 20111 LVecclvec 20139 dimcldim 31398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-reg 9208 ax-inf2 9256 ax-ac2 10077 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-oi 9126 df-r1 9380 df-rank 9381 df-card 9555 df-acn 9558 df-ac 9730 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-xnn0 12163 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-tset 16821 df-ple 16822 df-ocomp 16823 df-0g 16946 df-mre 17089 df-mrc 17090 df-mri 17091 df-acs 17092 df-proset 17802 df-drs 17803 df-poset 17820 df-ipo 18034 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-drng 19769 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lbs 20112 df-lvec 20140 df-dim 31399 |
This theorem is referenced by: dimcl 31402 lvecdim0i 31403 lvecdim0 31404 lssdimle 31405 dimpropd 31406 rgmoddim 31407 frlmdim 31408 lsatdim 31414 dimkerim 31422 fedgmul 31426 extdg1id 31452 ccfldextdgrr 31456 |
Copyright terms: Public domain | W3C validator |