Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimval Structured version   Visualization version   GIF version

Theorem dimval 31822
Description: The dimension of a vector space 𝐹 is the cardinality of one of its bases. (Contributed by Thierry Arnoux, 6-May-2023.)
Hypothesis
Ref Expression
dimval.1 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
dimval ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯‘𝑆))

Proof of Theorem dimval
Dummy variables 𝑡 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3458 . . . 4 (𝐹 ∈ LVec → 𝐹 ∈ V)
2 fveq2 6811 . . . . . . . 8 (𝑓 = 𝐹 → (LBasis‘𝑓) = (LBasis‘𝐹))
3 dimval.1 . . . . . . . 8 𝐽 = (LBasis‘𝐹)
42, 3eqtr4di 2794 . . . . . . 7 (𝑓 = 𝐹 → (LBasis‘𝑓) = 𝐽)
54imaeq2d 5986 . . . . . 6 (𝑓 = 𝐹 → (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
65unieqd 4863 . . . . 5 (𝑓 = 𝐹 (♯ “ (LBasis‘𝑓)) = (♯ “ 𝐽))
7 df-dim 31821 . . . . 5 dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
8 hashf 14131 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
9 ffun 6640 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
103fvexi 6825 . . . . . . . 8 𝐽 ∈ V
1110funimaex 6558 . . . . . . 7 (Fun ♯ → (♯ “ 𝐽) ∈ V)
128, 9, 11mp2b 10 . . . . . 6 (♯ “ 𝐽) ∈ V
1312uniex 7635 . . . . 5 (♯ “ 𝐽) ∈ V
146, 7, 13fvmpt 6914 . . . 4 (𝐹 ∈ V → (dim‘𝐹) = (♯ “ 𝐽))
151, 14syl 17 . . 3 (𝐹 ∈ LVec → (dim‘𝐹) = (♯ “ 𝐽))
1615adantr 481 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯ “ 𝐽))
173lvecdim 20499 . . . . . . . . . 10 ((𝐹 ∈ LVec ∧ 𝑆𝐽𝑡𝐽) → 𝑆𝑡)
1817ad4ant124 1172 . . . . . . . . 9 ((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → 𝑆𝑡)
19 hasheni 14141 . . . . . . . . 9 (𝑆𝑡 → (♯‘𝑆) = (♯‘𝑡))
2018, 19syl 17 . . . . . . . 8 ((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) → (♯‘𝑆) = (♯‘𝑡))
2120adantr 481 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑆) = (♯‘𝑡))
22 simpr 485 . . . . . . 7 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → (♯‘𝑡) = 𝑥)
2321, 22eqtr2d 2777 . . . . . 6 (((((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) ∧ 𝑡𝐽) ∧ (♯‘𝑡) = 𝑥) → 𝑥 = (♯‘𝑆))
248, 9ax-mp 5 . . . . . . . 8 Fun ♯
25 fvelima 6874 . . . . . . . 8 ((Fun ♯ ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2624, 25mpan 687 . . . . . . 7 (𝑥 ∈ (♯ “ 𝐽) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2726adantl 482 . . . . . 6 (((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → ∃𝑡𝐽 (♯‘𝑡) = 𝑥)
2823, 27r19.29a 3155 . . . . 5 (((𝐹 ∈ LVec ∧ 𝑆𝐽) ∧ 𝑥 ∈ (♯ “ 𝐽)) → 𝑥 = (♯‘𝑆))
2928ralrimiva 3139 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆))
30 ne0i 4278 . . . . . . 7 (𝑆𝐽𝐽 ≠ ∅)
3130adantl 482 . . . . . 6 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → 𝐽 ≠ ∅)
32 ffn 6637 . . . . . . . . 9 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
338, 32ax-mp 5 . . . . . . . 8 ♯ Fn V
34 ssv 3954 . . . . . . . 8 𝐽 ⊆ V
35 fnimaeq0 6603 . . . . . . . 8 ((♯ Fn V ∧ 𝐽 ⊆ V) → ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅))
3633, 34, 35mp2an 689 . . . . . . 7 ((♯ “ 𝐽) = ∅ ↔ 𝐽 = ∅)
3736necon3bii 2993 . . . . . 6 ((♯ “ 𝐽) ≠ ∅ ↔ 𝐽 ≠ ∅)
3831, 37sylibr 233 . . . . 5 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) ≠ ∅)
39 eqsn 4773 . . . . 5 ((♯ “ 𝐽) ≠ ∅ → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4038, 39syl 17 . . . 4 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → ((♯ “ 𝐽) = {(♯‘𝑆)} ↔ ∀𝑥 ∈ (♯ “ 𝐽)𝑥 = (♯‘𝑆)))
4129, 40mpbird 256 . . 3 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)})
4241unieqd 4863 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (♯ “ 𝐽) = {(♯‘𝑆)})
43 fvex 6824 . . . 4 (♯‘𝑆) ∈ V
4443unisn 4871 . . 3 {(♯‘𝑆)} = (♯‘𝑆)
4544a1i 11 . 2 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → {(♯‘𝑆)} = (♯‘𝑆))
4616, 42, 453eqtrd 2780 1 ((𝐹 ∈ LVec ∧ 𝑆𝐽) → (dim‘𝐹) = (♯‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  Vcvv 3440  cun 3894  wss 3896  c0 4266  {csn 4570   cuni 4849   class class class wbr 5086  cima 5610  Fun wfun 6459   Fn wfn 6460  wf 6461  cfv 6465  cen 8779  +∞cpnf 11085  0cn0 12312  chash 14123  LBasisclbs 20416  LVecclvec 20444  dimcldim 31820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-reg 9427  ax-inf2 9476  ax-ac2 10298  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-tpos 8090  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-map 8666  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-oi 9345  df-r1 9599  df-rank 9600  df-card 9774  df-acn 9777  df-ac 9951  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-7 12120  df-8 12121  df-9 12122  df-n0 12313  df-xnn0 12385  df-z 12399  df-dec 12517  df-uz 12662  df-fz 13319  df-hash 14124  df-struct 16922  df-sets 16939  df-slot 16957  df-ndx 16969  df-base 16987  df-ress 17016  df-plusg 17049  df-mulr 17050  df-tset 17055  df-ple 17056  df-ocomp 17057  df-0g 17226  df-mre 17369  df-mrc 17370  df-mri 17371  df-acs 17372  df-proset 18087  df-drs 18088  df-poset 18105  df-ipo 18320  df-mgm 18400  df-sgrp 18449  df-mnd 18460  df-submnd 18505  df-grp 18653  df-minusg 18654  df-sbg 18655  df-subg 18825  df-cmn 19460  df-abl 19461  df-mgp 19793  df-ur 19810  df-ring 19857  df-oppr 19934  df-dvdsr 19955  df-unit 19956  df-invr 19986  df-drng 20069  df-lmod 20205  df-lss 20274  df-lsp 20314  df-lbs 20417  df-lvec 20445  df-dim 31821
This theorem is referenced by:  dimcl  31824  lvecdim0i  31825  lvecdim0  31826  lssdimle  31827  dimpropd  31828  rgmoddim  31829  frlmdim  31830  lsatdim  31836  dimkerim  31844  fedgmul  31848  extdg1id  31874  ccfldextdgrr  31878
  Copyright terms: Public domain W3C validator