HomeHome Metamath Proof Explorer
Theorem List (p. 327 of 480)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30439)
  Hilbert Space Explorer  Hilbert Space Explorer
(30440-31962)
  Users' Mathboxes  Users' Mathboxes
(31963-47940)
 

Theorem List for Metamath Proof Explorer - 32601-32700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxrnarchi 32601 The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018.)
Β¬ ℝ*𝑠 ∈ Archi
 
Theoremisarchi2 32602* Alternative way to express the predicate "π‘Š is Archimedean ", for Tosets. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    β‡’   ((π‘Š ∈ Toset ∧ π‘Š ∈ Mnd) β†’ (π‘Š ∈ Archi ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ( 0 < π‘₯ β†’ βˆƒπ‘› ∈ β„• 𝑦 ≀ (𝑛 Β· π‘₯))))
 
Theoremsubmarchi 32603 A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
(((π‘Š ∈ Toset ∧ π‘Š ∈ Archi) ∧ 𝐴 ∈ (SubMndβ€˜π‘Š)) β†’ (π‘Š β†Ύs 𝐴) ∈ Archi)
 
Theoremisarchi3 32604* This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    β‡’   (π‘Š ∈ oGrp β†’ (π‘Š ∈ Archi ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ( 0 < π‘₯ β†’ βˆƒπ‘› ∈ β„• 𝑦 < (𝑛 Β· π‘₯))))
 
Theoremarchirng 32605* Property of Archimedean ordered groups, framing positive π‘Œ between multiples of 𝑋. (Contributed by Thierry Arnoux, 12-Apr-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 0 < 𝑋)    &   (πœ‘ β†’ 0 < π‘Œ)    β‡’   (πœ‘ β†’ βˆƒπ‘› ∈ β„•0 ((𝑛 Β· 𝑋) < π‘Œ ∧ π‘Œ ≀ ((𝑛 + 1) Β· 𝑋)))
 
Theoremarchirngz 32606* Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 0 < 𝑋)    &   (πœ‘ β†’ (oppgβ€˜π‘Š) ∈ oGrp)    β‡’   (πœ‘ β†’ βˆƒπ‘› ∈ β„€ ((𝑛 Β· 𝑋) < π‘Œ ∧ π‘Œ ≀ ((𝑛 + 1) Β· 𝑋)))
 
Theoremarchiexdiv 32607* In an Archimedean group, given two positive elements, there exists a "divisor" 𝑛. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    β‡’   (((π‘Š ∈ oGrp ∧ π‘Š ∈ Archi) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 0 < 𝑋) β†’ βˆƒπ‘› ∈ β„• π‘Œ < (𝑛 Β· 𝑋))
 
Theoremarchiabllem1a 32608* Lemma for archiabl 32615: In case an archimedean group π‘Š admits a smallest positive element π‘ˆ, then any positive element 𝑋 of π‘Š can be written as (𝑛 Β· π‘ˆ) with 𝑛 ∈ β„•. Since the reciprocal holds for negative elements, π‘Š is then isomorphic to β„€. (Contributed by Thierry Arnoux, 12-Apr-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐡)    &   (πœ‘ β†’ 0 < π‘ˆ)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 0 < π‘₯) β†’ π‘ˆ ≀ π‘₯)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ 0 < 𝑋)    β‡’   (πœ‘ β†’ βˆƒπ‘› ∈ β„• 𝑋 = (𝑛 Β· π‘ˆ))
 
Theoremarchiabllem1b 32609* Lemma for archiabl 32615. (Contributed by Thierry Arnoux, 13-Apr-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐡)    &   (πœ‘ β†’ 0 < π‘ˆ)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 0 < π‘₯) β†’ π‘ˆ ≀ π‘₯)    β‡’   ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ βˆƒπ‘› ∈ β„€ 𝑦 = (𝑛 Β· π‘ˆ))
 
Theoremarchiabllem1 32610* Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐡)    &   (πœ‘ β†’ 0 < π‘ˆ)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 0 < π‘₯) β†’ π‘ˆ ≀ π‘₯)    β‡’   (πœ‘ β†’ π‘Š ∈ Abel)
 
Theoremarchiabllem2a 32611* Lemma for archiabl 32615, which requires the group to be both left- and right-ordered. (Contributed by Thierry Arnoux, 13-Apr-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &    + = (+gβ€˜π‘Š)    &   (πœ‘ β†’ (oppgβ€˜π‘Š) ∈ oGrp)    &   ((πœ‘ ∧ π‘Ž ∈ 𝐡 ∧ 0 < π‘Ž) β†’ βˆƒπ‘ ∈ 𝐡 ( 0 < 𝑏 ∧ 𝑏 < π‘Ž))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ 0 < 𝑋)    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ 𝐡 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) ≀ 𝑋))
 
Theoremarchiabllem2c 32612* Lemma for archiabl 32615. (Contributed by Thierry Arnoux, 1-May-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &    + = (+gβ€˜π‘Š)    &   (πœ‘ β†’ (oppgβ€˜π‘Š) ∈ oGrp)    &   ((πœ‘ ∧ π‘Ž ∈ 𝐡 ∧ 0 < π‘Ž) β†’ βˆƒπ‘ ∈ 𝐡 ( 0 < 𝑏 ∧ 𝑏 < π‘Ž))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ Β¬ (𝑋 + π‘Œ) < (π‘Œ + 𝑋))
 
Theoremarchiabllem2b 32613* Lemma for archiabl 32615. (Contributed by Thierry Arnoux, 1-May-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &    + = (+gβ€˜π‘Š)    &   (πœ‘ β†’ (oppgβ€˜π‘Š) ∈ oGrp)    &   ((πœ‘ ∧ π‘Ž ∈ 𝐡 ∧ 0 < π‘Ž) β†’ βˆƒπ‘ ∈ 𝐡 ( 0 < 𝑏 ∧ 𝑏 < π‘Ž))    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 + π‘Œ) = (π‘Œ + 𝑋))
 
Theoremarchiabllem2 32614* Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.)
𝐡 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    ≀ = (leβ€˜π‘Š)    &    < = (ltβ€˜π‘Š)    &    Β· = (.gβ€˜π‘Š)    &   (πœ‘ β†’ π‘Š ∈ oGrp)    &   (πœ‘ β†’ π‘Š ∈ Archi)    &    + = (+gβ€˜π‘Š)    &   (πœ‘ β†’ (oppgβ€˜π‘Š) ∈ oGrp)    &   ((πœ‘ ∧ π‘Ž ∈ 𝐡 ∧ 0 < π‘Ž) β†’ βˆƒπ‘ ∈ 𝐡 ( 0 < 𝑏 ∧ 𝑏 < π‘Ž))    β‡’   (πœ‘ β†’ π‘Š ∈ Abel)
 
Theoremarchiabl 32615 Archimedean left- and right- ordered groups are Abelian. (Contributed by Thierry Arnoux, 1-May-2018.)
((π‘Š ∈ oGrp ∧ (oppgβ€˜π‘Š) ∈ oGrp ∧ π‘Š ∈ Archi) β†’ π‘Š ∈ Abel)
 
21.3.9.12  Semiring left modules
 
Syntaxcslmd 32616 Extend class notation with class of all semimodules.
class SLMod
 
Definitiondf-slmd 32617* Define the class of all (left) modules over semirings, i.e. semimodules, which are generalizations of left modules. A semimodule is a commutative monoid (=vectors) together with a semiring (=scalars) and a left scalar product connecting them. (0[,]+∞) for example is not a full fledged left module, but is a semimodule. Definition of [Golan] p. 149. (Contributed by Thierry Arnoux, 21-Mar-2018.)
SLMod = {𝑔 ∈ CMnd ∣ [(Baseβ€˜π‘”) / 𝑣][(+gβ€˜π‘”) / π‘Ž][( ·𝑠 β€˜π‘”) / 𝑠][(Scalarβ€˜π‘”) / 𝑓][(Baseβ€˜π‘“) / π‘˜][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑](𝑓 ∈ SRing ∧ βˆ€π‘ž ∈ π‘˜ βˆ€π‘Ÿ ∈ π‘˜ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘€ ∈ 𝑣 (((π‘Ÿπ‘ π‘€) ∈ 𝑣 ∧ (π‘Ÿπ‘ (π‘€π‘Žπ‘₯)) = ((π‘Ÿπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘₯)) ∧ ((π‘žπ‘π‘Ÿ)𝑠𝑀) = ((π‘žπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘€))) ∧ (((π‘žπ‘‘π‘Ÿ)𝑠𝑀) = (π‘žπ‘ (π‘Ÿπ‘ π‘€)) ∧ ((1rβ€˜π‘“)𝑠𝑀) = 𝑀 ∧ ((0gβ€˜π‘“)𝑠𝑀) = (0gβ€˜π‘”))))}
 
Theoremisslmd 32618* The predicate "is a semimodule". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    ⨣ = (+gβ€˜πΉ)    &    Γ— = (.rβ€˜πΉ)    &    1 = (1rβ€˜πΉ)    &   π‘‚ = (0gβ€˜πΉ)    β‡’   (π‘Š ∈ SLMod ↔ (π‘Š ∈ CMnd ∧ 𝐹 ∈ SRing ∧ βˆ€π‘ž ∈ 𝐾 βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘€ ∈ 𝑉 (((π‘Ÿ Β· 𝑀) ∈ 𝑉 ∧ (π‘Ÿ Β· (𝑀 + π‘₯)) = ((π‘Ÿ Β· 𝑀) + (π‘Ÿ Β· π‘₯)) ∧ ((π‘ž ⨣ π‘Ÿ) Β· 𝑀) = ((π‘ž Β· 𝑀) + (π‘Ÿ Β· 𝑀))) ∧ (((π‘ž Γ— π‘Ÿ) Β· 𝑀) = (π‘ž Β· (π‘Ÿ Β· 𝑀)) ∧ ( 1 Β· 𝑀) = 𝑀 ∧ (𝑂 Β· 𝑀) = 0 ))))
 
Theoremslmdlema 32619 Lemma for properties of a semimodule. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    ⨣ = (+gβ€˜πΉ)    &    Γ— = (.rβ€˜πΉ)    &    1 = (1rβ€˜πΉ)    &   π‘‚ = (0gβ€˜πΉ)    β‡’   ((π‘Š ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (((𝑅 Β· π‘Œ) ∈ 𝑉 ∧ (𝑅 Β· (π‘Œ + 𝑋)) = ((𝑅 Β· π‘Œ) + (𝑅 Β· 𝑋)) ∧ ((𝑄 ⨣ 𝑅) Β· π‘Œ) = ((𝑄 Β· π‘Œ) + (𝑅 Β· π‘Œ))) ∧ (((𝑄 Γ— 𝑅) Β· π‘Œ) = (𝑄 Β· (𝑅 Β· π‘Œ)) ∧ ( 1 Β· π‘Œ) = π‘Œ ∧ (𝑂 Β· π‘Œ) = 0 )))
 
Theoremlmodslmd 32620 Left semimodules generalize the notion of left modules. (Contributed by Thierry Arnoux, 1-Apr-2018.)
(π‘Š ∈ LMod β†’ π‘Š ∈ SLMod)
 
Theoremslmdcmn 32621 A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.)
(π‘Š ∈ SLMod β†’ π‘Š ∈ CMnd)
 
Theoremslmdmnd 32622 A semimodule is a monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.)
(π‘Š ∈ SLMod β†’ π‘Š ∈ Mnd)
 
Theoremslmdsrg 32623 The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐹 = (Scalarβ€˜π‘Š)    β‡’   (π‘Š ∈ SLMod β†’ 𝐹 ∈ SRing)
 
Theoremslmdbn0 32624 The base set of a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.)
𝐡 = (Baseβ€˜π‘Š)    β‡’   (π‘Š ∈ SLMod β†’ 𝐡 β‰  βˆ…)
 
Theoremslmdacl 32625 Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐹 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    + = (+gβ€˜πΉ)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 + π‘Œ) ∈ 𝐾)
 
Theoremslmdmcl 32626 Closure of ring multiplication for a semimodule. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐹 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    Β· = (.rβ€˜πΉ)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 Β· π‘Œ) ∈ 𝐾)
 
Theoremslmdsn0 32627 The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.)
𝐹 = (Scalarβ€˜π‘Š)    &   π΅ = (Baseβ€˜πΉ)    β‡’   (π‘Š ∈ SLMod β†’ 𝐡 β‰  βˆ…)
 
Theoremslmdvacl 32628 Closure of vector addition for a semiring left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) ∈ 𝑉)
 
Theoremslmdass 32629 Semiring left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    β‡’   ((π‘Š ∈ SLMod ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) β†’ ((𝑋 + π‘Œ) + 𝑍) = (𝑋 + (π‘Œ + 𝑍)))
 
Theoremslmdvscl 32630 Closure of scalar product for a semiring left module. (hvmulcl 30534 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (𝑅 Β· 𝑋) ∈ 𝑉)
 
Theoremslmdvsdi 32631 Distributive law for scalar product. (ax-hvdistr1 30529 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    β‡’   ((π‘Š ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (𝑅 Β· (𝑋 + π‘Œ)) = ((𝑅 Β· 𝑋) + (𝑅 Β· π‘Œ)))
 
Theoremslmdvsdir 32632 Distributive law for scalar product. (ax-hvdistr1 30529 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    ⨣ = (+gβ€˜πΉ)    β‡’   ((π‘Š ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) β†’ ((𝑄 ⨣ 𝑅) Β· 𝑋) = ((𝑄 Β· 𝑋) + (𝑅 Β· 𝑋)))
 
Theoremslmdvsass 32633 Associative law for scalar product. (ax-hvmulass 30528 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    Γ— = (.rβ€˜πΉ)    β‡’   ((π‘Š ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) β†’ ((𝑄 Γ— 𝑅) Β· 𝑋) = (𝑄 Β· (𝑅 Β· 𝑋)))
 
Theoremslmd0cl 32634 The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐹 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    0 = (0gβ€˜πΉ)    β‡’   (π‘Š ∈ SLMod β†’ 0 ∈ 𝐾)
 
Theoremslmd1cl 32635 The ring unity in a semiring left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐹 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    1 = (1rβ€˜πΉ)    β‡’   (π‘Š ∈ SLMod β†’ 1 ∈ 𝐾)
 
Theoremslmdvs1 32636 Scalar product with ring unity. (ax-hvmulid 30527 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &    1 = (1rβ€˜πΉ)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝑉) β†’ ( 1 Β· 𝑋) = 𝑋)
 
Theoremslmd0vcl 32637 The zero vector is a vector. (ax-hv0cl 30524 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    β‡’   (π‘Š ∈ SLMod β†’ 0 ∈ 𝑉)
 
Theoremslmd0vlid 32638 Left identity law for the zero vector. (hvaddlid 30544 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝑉) β†’ ( 0 + 𝑋) = 𝑋)
 
Theoremslmd0vrid 32639 Right identity law for the zero vector. (ax-hvaddid 30525 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝑉) β†’ (𝑋 + 0 ) = 𝑋)
 
Theoremslmd0vs 32640 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 30531 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝑉 = (Baseβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   π‘‚ = (0gβ€˜πΉ)    &    0 = (0gβ€˜π‘Š)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝑉) β†’ (𝑂 Β· 𝑋) = 0 )
 
Theoremslmdvs0 32641 Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 30545 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐹 = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    0 = (0gβ€˜π‘Š)    β‡’   ((π‘Š ∈ SLMod ∧ 𝑋 ∈ 𝐾) β†’ (𝑋 Β· 0 ) = 0 )
 
Theoremgsumvsca1 32642* Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.)
𝐡 = (Baseβ€˜π‘Š)    &   πΊ = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &   (πœ‘ β†’ 𝐾 βŠ† (Baseβ€˜πΊ))    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ π‘Š ∈ SLMod)    &   (πœ‘ β†’ 𝑃 ∈ 𝐾)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝑄 ∈ 𝐡)    β‡’   (πœ‘ β†’ (π‘Š Ξ£g (π‘˜ ∈ 𝐴 ↦ (𝑃 Β· 𝑄))) = (𝑃 Β· (π‘Š Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝑄))))
 
Theoremgsumvsca2 32643* Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) (Proof shortened by AV, 12-Dec-2019.)
𝐡 = (Baseβ€˜π‘Š)    &   πΊ = (Scalarβ€˜π‘Š)    &    0 = (0gβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &   (πœ‘ β†’ 𝐾 βŠ† (Baseβ€˜πΊ))    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ π‘Š ∈ SLMod)    &   (πœ‘ β†’ 𝑄 ∈ 𝐡)    &   ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝑃 ∈ 𝐾)    β‡’   (πœ‘ β†’ (π‘Š Ξ£g (π‘˜ ∈ 𝐴 ↦ (𝑃 Β· 𝑄))) = ((𝐺 Ξ£g (π‘˜ ∈ 𝐴 ↦ 𝑃)) Β· 𝑄))
 
21.3.9.13  Simple groups
 
Theoremprmsimpcyc 32644 A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023.)
𝐡 = (Baseβ€˜πΊ)    β‡’   ((β™―β€˜π΅) ∈ β„™ β†’ (𝐺 ∈ SimpGrp ↔ 𝐺 ∈ CycGrp))
 
21.3.9.14  Rings - misc additions
 
Theoremidomdomd 32645 An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025.)
(πœ‘ β†’ 𝑅 ∈ IDomn)    β‡’   (πœ‘ β†’ 𝑅 ∈ Domn)
 
Theoremidomringd 32646 An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.)
(πœ‘ β†’ 𝑅 ∈ IDomn)    β‡’   (πœ‘ β†’ 𝑅 ∈ Ring)
 
Theoremdomnlcan 32647 Left-cancellation law for domains. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   (πœ‘ β†’ 𝑋 ∈ (𝐡 βˆ– { 0 }))    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ 𝑅 ∈ Domn)    &   (πœ‘ β†’ (𝑋 Β· π‘Œ) = (𝑋 Β· 𝑍))    β‡’   (πœ‘ β†’ π‘Œ = 𝑍)
 
Theoremidomrcan 32648 Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   (πœ‘ β†’ 𝑋 ∈ (𝐡 βˆ– { 0 }))    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ 𝑅 ∈ IDomn)    &   (πœ‘ β†’ (π‘Œ Β· 𝑋) = (𝑍 Β· 𝑋))    β‡’   (πœ‘ β†’ π‘Œ = 𝑍)
 
Theoremurpropd 32649* Sufficient condition for ring unities to be equal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
𝐡 = (Baseβ€˜π‘†)    &   (πœ‘ β†’ 𝑆 ∈ 𝑉)    &   (πœ‘ β†’ 𝑇 ∈ π‘Š)    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘‡))    &   (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯(.rβ€˜π‘†)𝑦) = (π‘₯(.rβ€˜π‘‡)𝑦))    β‡’   (πœ‘ β†’ (1rβ€˜π‘†) = (1rβ€˜π‘‡))
 
Theorem0ringsubrg 32650 A subring of a zero ring is a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ (β™―β€˜π΅) = 1)    &   (πœ‘ β†’ 𝑆 ∈ (SubRingβ€˜π‘…))    β‡’   (πœ‘ β†’ (β™―β€˜π‘†) = 1)
 
Theoremdvdschrmulg 32651 In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.)
𝐢 = (chrβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘…)    &    Β· = (.gβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝐢 βˆ₯ 𝑁 ∧ 𝐴 ∈ 𝐡) β†’ (𝑁 Β· 𝐴) = 0 )
 
Theoremfreshmansdream 32652 For a prime number 𝑃, if 𝑋 and π‘Œ are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + π‘Œ)↑𝑃) = ((𝑋↑𝑃) + (π‘Œβ†‘π‘ƒ)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    ↑ = (.gβ€˜(mulGrpβ€˜π‘…))    &   π‘ƒ = (chrβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑃 ∈ β„™)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑃 ↑ (𝑋 + π‘Œ)) = ((𝑃 ↑ 𝑋) + (𝑃 ↑ π‘Œ)))
 
Theoremfrobrhm 32653* In a commutative ring with prime characteristic, the Frobenius function 𝐹 is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ƒ = (chrβ€˜π‘…)    &    ↑ = (.gβ€˜(mulGrpβ€˜π‘…))    &   πΉ = (π‘₯ ∈ 𝐡 ↦ (𝑃 ↑ π‘₯))    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑃 ∈ β„™)    β‡’   (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑅))
 
Theoremress1r 32654 1r is unaffected by restriction. This is a bit more generic than subrg1 20473. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   π΅ = (Baseβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 βŠ† 𝐡) β†’ 1 = (1rβ€˜π‘†))
 
Theoremringinvval 32655* The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017.)
𝐡 = (Baseβ€˜π‘…)    &    βˆ— = (.rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π‘ = (invrβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ π‘ˆ) β†’ (π‘β€˜π‘‹) = (℩𝑦 ∈ π‘ˆ (𝑦 βˆ— 𝑋) = 1 ))
 
Theoremdvrcan5 32656 Cancellation law for common factor in ratio. (divcan5 11921 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ π‘ˆ ∧ 𝑍 ∈ π‘ˆ)) β†’ ((𝑋 Β· 𝑍) / (π‘Œ Β· 𝑍)) = (𝑋 / π‘Œ))
 
Theoremsubrgchr 32657 If 𝐴 is a subring of 𝑅, then they have the same characteristic. (Contributed by Thierry Arnoux, 24-Feb-2018.)
(𝐴 ∈ (SubRingβ€˜π‘…) β†’ (chrβ€˜(𝑅 β†Ύs 𝐴)) = (chrβ€˜π‘…))
 
Theoremrmfsupp2 32658* A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023.)
𝑅 = (Baseβ€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ Ring)    &   (πœ‘ β†’ 𝑉 ∈ 𝑋)    &   ((πœ‘ ∧ 𝑣 ∈ 𝑉) β†’ 𝐢 ∈ 𝑅)    &   (πœ‘ β†’ 𝐴:π‘‰βŸΆπ‘…)    &   (πœ‘ β†’ 𝐴 finSupp (0gβ€˜π‘€))    β‡’   (πœ‘ β†’ (𝑣 ∈ 𝑉 ↦ ((π΄β€˜π‘£)(.rβ€˜π‘€)𝐢)) finSupp (0gβ€˜π‘€))
 
21.3.9.15  Euclidean Domains
 
Syntaxceuf 32659 Declare the syntax for the Euclidean function index extractor.
class EuclF
 
Definitiondf-euf 32660 Define the Euclidean function. (Contributed by Thierry Arnoux, 22-Mar-2025.) Use its index-independent form eufid 32662 instead. (New usage is discouraged.)
EuclF = Slot 21
 
Theoremeufndx 32661 Index value of the Euclidean function slot. Use ndxarg 17134. (Contributed by Thierry Arnoux, 22-Mar-2025.) (New usage is discouraged.)
(EuclFβ€˜ndx) = 21
 
Theoremeufid 32662 Utility theorem: index-independent form of df-euf 32660. (Contributed by Thierry Arnoux, 22-Mar-2025.)
EuclF = Slot (EuclFβ€˜ndx)
 
Syntaxcedom 32663 Declare the syntax for the Euclidean Domain.
class EDomn
 
Definitiondf-edom 32664* Define Euclidean Domains. (Contributed by Thierry Arnoux, 22-Mar-2025.)
EDomn = {𝑑 ∈ IDomn ∣ [(EuclFβ€˜π‘‘) / 𝑒][(Baseβ€˜π‘‘) / 𝑣](Fun 𝑒 ∧ (𝑒 β€œ (𝑣 βˆ– {(0gβ€˜π‘‘)})) βŠ† (0[,)+∞) ∧ βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ (𝑣 βˆ– {(0gβ€˜π‘‘)})βˆƒπ‘ž ∈ 𝑣 βˆƒπ‘Ÿ ∈ 𝑣 (π‘Ž = ((𝑏(.rβ€˜π‘‘)π‘ž)(+gβ€˜π‘‘)π‘Ÿ) ∧ (π‘Ÿ = (0gβ€˜π‘‘) ∨ (π‘’β€˜π‘Ÿ) < (π‘’β€˜π‘))))}
 
21.3.9.16  Division Rings
 
Theoremringinveu 32665 If a ring unit element 𝑋 admits both a left inverse π‘Œ and a right inverse 𝑍, they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ (π‘Œ Β· 𝑋) = 1 )    &   (πœ‘ β†’ (𝑋 Β· 𝑍) = 1 )    β‡’   (πœ‘ β†’ 𝑍 = π‘Œ)
 
Theoremisdrng4 32666* A division ring is a ring in which 1 β‰  0 and every nonzero element has a left and right inverse. (Contributed by Thierry Arnoux, 2-Mar-2025.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ Ring)    β‡’   (πœ‘ β†’ (𝑅 ∈ DivRing ↔ ( 1 β‰  0 ∧ βˆ€π‘₯ ∈ (𝐡 βˆ– { 0 })βˆƒπ‘¦ ∈ 𝐡 ((π‘₯ Β· 𝑦) = 1 ∧ (𝑦 Β· π‘₯) = 1 ))))
 
Theoremrndrhmcl 32667 The image of a division ring by a ring homomorphism is a division ring. (Contributed by Thierry Arnoux, 25-Feb-2025.)
𝑅 = (𝑁 β†Ύs ran 𝐹)    &    0 = (0gβ€˜π‘)    &   (πœ‘ β†’ 𝐹 ∈ (𝑀 RingHom 𝑁))    &   (πœ‘ β†’ ran 𝐹 β‰  { 0 })    &   (πœ‘ β†’ 𝑀 ∈ DivRing)    β‡’   (πœ‘ β†’ 𝑅 ∈ DivRing)
 
21.3.9.17  Subfields
 
Theoremsdrgdvcl 32668 A sub-division-ring is closed under the ring division operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
/ = (/rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   (πœ‘ β†’ 𝐴 ∈ (SubDRingβ€˜π‘…))    &   (πœ‘ β†’ 𝑋 ∈ 𝐴)    &   (πœ‘ β†’ π‘Œ ∈ 𝐴)    &   (πœ‘ β†’ π‘Œ β‰  0 )    β‡’   (πœ‘ β†’ (𝑋 / π‘Œ) ∈ 𝐴)
 
Theoremsdrginvcl 32669 A sub-division-ring is closed under the ring inverse operation. (Contributed by Thierry Arnoux, 15-Jan-2025.)
𝐼 = (invrβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   ((𝐴 ∈ (SubDRingβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ 𝑋 β‰  0 ) β†’ (πΌβ€˜π‘‹) ∈ 𝐴)
 
Theoremprimefldchr 32670 The characteristic of a prime field is the same as the characteristic of the main field. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝑃 = (𝑅 β†Ύs ∩ (SubDRingβ€˜π‘…))    β‡’   (𝑅 ∈ DivRing β†’ (chrβ€˜π‘ƒ) = (chrβ€˜π‘…))
 
21.3.9.18  Field extensions generated by a set
 
Syntaxcfldgen 32671 Syntax for a function generating sub-fields.
class fldGen
 
Definitiondf-fldgen 32672* Define a function generating the smallest sub-division-ring of a given ring containing a given set. If the base structure is a division ring, then this is also a division ring (see fldgensdrg 32675). If the base structure is a field, this is a subfield (see fldgenfld 32681 and fldsdrgfld 20558). In general this will be used in the context of fields, hence the name fldGen. (Contributed by Saveliy Skresanov and Thierry Arnoux, 9-Jan-2025.)
fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {π‘Ž ∈ (SubDRingβ€˜π‘“) ∣ 𝑠 βŠ† π‘Ž})
 
Theoremfldgenval 32673* Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ DivRing)    &   (πœ‘ β†’ 𝑆 βŠ† 𝐡)    β‡’   (πœ‘ β†’ (𝐹 fldGen 𝑆) = ∩ {π‘Ž ∈ (SubDRingβ€˜πΉ) ∣ 𝑆 βŠ† π‘Ž})
 
Theoremfldgenssid 32674 The field generated by a set of elements contains those elements. See lspssid 20741. (Contributed by Thierry Arnoux, 15-Jan-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ DivRing)    &   (πœ‘ β†’ 𝑆 βŠ† 𝐡)    β‡’   (πœ‘ β†’ 𝑆 βŠ† (𝐹 fldGen 𝑆))
 
Theoremfldgensdrg 32675 A generated subfield is a sub-division-ring. (Contributed by Thierry Arnoux, 11-Jan-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ DivRing)    &   (πœ‘ β†’ 𝑆 βŠ† 𝐡)    β‡’   (πœ‘ β†’ (𝐹 fldGen 𝑆) ∈ (SubDRingβ€˜πΉ))
 
Theoremfldgenssv 32676 A generated subfield is a subset of the field's base. (Contributed by Thierry Arnoux, 25-Feb-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ DivRing)    &   (πœ‘ β†’ 𝑆 βŠ† 𝐡)    β‡’   (πœ‘ β†’ (𝐹 fldGen 𝑆) βŠ† 𝐡)
 
Theoremfldgenss 32677 Generated subfields preserve subset ordering. ( see lspss 20740 and spanss 30869) (Contributed by Thierry Arnoux, 15-Jan-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ DivRing)    &   (πœ‘ β†’ 𝑆 βŠ† 𝐡)    &   (πœ‘ β†’ 𝑇 βŠ† 𝑆)    β‡’   (πœ‘ β†’ (𝐹 fldGen 𝑇) βŠ† (𝐹 fldGen 𝑆))
 
Theoremfldgenidfld 32678 The subfield generated by a subfield is the subfield itself. (Contributed by Thierry Arnoux, 15-Jan-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ DivRing)    &   (πœ‘ β†’ 𝑆 ∈ (SubDRingβ€˜πΉ))    β‡’   (πœ‘ β†’ (𝐹 fldGen 𝑆) = 𝑆)
 
Theoremfldgenssp 32679 The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ DivRing)    &   (πœ‘ β†’ 𝑆 ∈ (SubDRingβ€˜πΉ))    &   (πœ‘ β†’ 𝑇 βŠ† 𝑆)    β‡’   (πœ‘ β†’ (𝐹 fldGen 𝑇) βŠ† 𝑆)
 
Theoremfldgenid 32680 The subfield of a field 𝐹 generated by the whole base set of 𝐹 is 𝐹 itself. (Contributed by Thierry Arnoux, 11-Jan-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ DivRing)    β‡’   (πœ‘ β†’ (𝐹 fldGen 𝐡) = 𝐡)
 
Theoremfldgenfld 32681 A generated subfield is a field. (Contributed by Thierry Arnoux, 11-Jan-2025.)
𝐡 = (Baseβ€˜πΉ)    &   (πœ‘ β†’ 𝐹 ∈ Field)    &   (πœ‘ β†’ 𝑆 βŠ† 𝐡)    β‡’   (πœ‘ β†’ (𝐹 β†Ύs (𝐹 fldGen 𝑆)) ∈ Field)
 
Theoremprimefldgen1 32682 The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025.)
𝐡 = (Baseβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ DivRing)    β‡’   (πœ‘ β†’ ∩ (SubDRingβ€˜π‘…) = (𝑅 fldGen { 1 }))
 
Theorem1fldgenq 32683 The field of rational numbers β„š is generated by 1 in β„‚fld, that is, β„š is the prime field of β„‚fld. (Contributed by Thierry Arnoux, 15-Jan-2025.)
(β„‚fld fldGen {1}) = β„š
 
21.3.9.19  Totally ordered rings and fields
 
Syntaxcorng 32684 Extend class notation with the class of all ordered rings.
class oRing
 
Syntaxcofld 32685 Extend class notation with the class of all ordered fields.
class oField
 
Definitiondf-orng 32686* Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
oRing = {π‘Ÿ ∈ (Ring ∩ oGrp) ∣ [(Baseβ€˜π‘Ÿ) / 𝑣][(0gβ€˜π‘Ÿ) / 𝑧][(.rβ€˜π‘Ÿ) / 𝑑][(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))}
 
Definitiondf-ofld 32687 Define class of all ordered fields. An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.)
oField = (Field ∩ oRing)
 
Theoremisorng 32688* An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    ≀ = (leβ€˜π‘…)    β‡’   (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ βˆ€π‘Ž ∈ 𝐡 βˆ€π‘ ∈ 𝐡 (( 0 ≀ π‘Ž ∧ 0 ≀ 𝑏) β†’ 0 ≀ (π‘Ž Β· 𝑏))))
 
Theoremorngring 32689 An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(𝑅 ∈ oRing β†’ 𝑅 ∈ Ring)
 
Theoremorngogrp 32690 An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(𝑅 ∈ oRing β†’ 𝑅 ∈ oGrp)
 
Theoremisofld 32691 An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
 
Theoremorngmul 32692 In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.)
𝐡 = (Baseβ€˜π‘…)    &    ≀ = (leβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐡 ∧ 0 ≀ 𝑋) ∧ (π‘Œ ∈ 𝐡 ∧ 0 ≀ π‘Œ)) β†’ 0 ≀ (𝑋 Β· π‘Œ))
 
Theoremorngsqr 32693 In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.)
𝐡 = (Baseβ€˜π‘…)    &    ≀ = (leβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐡) β†’ 0 ≀ (𝑋 Β· 𝑋))
 
Theoremornglmulle 32694 In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ oRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &    ≀ = (leβ€˜π‘…)    &   (πœ‘ β†’ 𝑋 ≀ π‘Œ)    &   (πœ‘ β†’ 0 ≀ 𝑍)    β‡’   (πœ‘ β†’ (𝑍 Β· 𝑋) ≀ (𝑍 Β· π‘Œ))
 
Theoremorngrmulle 32695 In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ oRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &    ≀ = (leβ€˜π‘…)    &   (πœ‘ β†’ 𝑋 ≀ π‘Œ)    &   (πœ‘ β†’ 0 ≀ 𝑍)    β‡’   (πœ‘ β†’ (𝑋 Β· 𝑍) ≀ (π‘Œ Β· 𝑍))
 
Theoremornglmullt 32696 In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ oRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &    < = (ltβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ DivRing)    &   (πœ‘ β†’ 𝑋 < π‘Œ)    &   (πœ‘ β†’ 0 < 𝑍)    β‡’   (πœ‘ β†’ (𝑍 Β· 𝑋) < (𝑍 Β· π‘Œ))
 
Theoremorngrmullt 32697 In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ oRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &    < = (ltβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ DivRing)    &   (πœ‘ β†’ 𝑋 < π‘Œ)    &   (πœ‘ β†’ 0 < 𝑍)    β‡’   (πœ‘ β†’ (𝑋 Β· 𝑍) < (π‘Œ Β· 𝑍))
 
Theoremorngmullt 32698 In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    < = (ltβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ oRing)    &   (πœ‘ β†’ 𝑅 ∈ DivRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 0 < 𝑋)    &   (πœ‘ β†’ 0 < π‘Œ)    β‡’   (πœ‘ β†’ 0 < (𝑋 Β· π‘Œ))
 
Theoremofldfld 32699 An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.)
(𝐹 ∈ oField β†’ 𝐹 ∈ Field)
 
Theoremofldtos 32700 An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
(𝐹 ∈ oField β†’ 𝐹 ∈ Toset)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-47940
  Copyright terms: Public domain < Previous  Next >