![]() |
Metamath
Proof Explorer Theorem List (p. 327 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43639) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dffix2 32601 | The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 = ran (𝐴 ∩ I ) | ||
Theorem | fixssdm 32602 | The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 ⊆ dom 𝐴 | ||
Theorem | fixssrn 32603 | The fixpoints of a class are a subset of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 ⊆ ran 𝐴 | ||
Theorem | fixcnv 32604 | The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix 𝐴 = Fix ◡𝐴 | ||
Theorem | fixun 32605 | The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) | ||
Theorem | ellimits 32606 | Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) | ||
Theorem | limitssson 32607 | The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ Limits ⊆ On | ||
Theorem | dfom5b 32608 | A quantifier-free definition of ω that does not depend on ax-inf 8832. (Note: label was changed from dfom5 8844 to dfom5b 32608 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ ω = (On ∩ ∩ Limits ) | ||
Theorem | sscoid 32609 | A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.) |
⊢ (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴 ∧ 𝐴 ⊆ 𝐵)) | ||
Theorem | dffun10 32610 | Another potential definition of functionhood. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/. (Contributed by Scott Fenton, 30-Aug-2017.) |
⊢ (Fun 𝐹 ↔ 𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹)))) | ||
Theorem | elfuns 32611 | Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ Funs ↔ Fun 𝐹) | ||
Theorem | elfunsg 32612 | Closed form of elfuns 32611. (Contributed by Scott Fenton, 2-May-2014.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) | ||
Theorem | brsingle 32613 | The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) | ||
Theorem | elsingles 32614* | Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) | ||
Theorem | fnsingle 32615 | The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Singleton Fn V | ||
Theorem | fvsingle 32616 | The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
⊢ (Singleton‘𝐴) = {𝐴} | ||
Theorem | dfsingles2 32617* | Alternate definition of the class of all singletons. (Contributed by Scott Fenton, 20-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Singletons = {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} | ||
Theorem | snelsingles 32618 | A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ Singletons | ||
Theorem | dfiota3 32619 | A definiton of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (℩𝑥𝜑) = ∪ ∪ ({{𝑥 ∣ 𝜑}} ∩ Singletons ) | ||
Theorem | dffv5 32620 | Another quantifier free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) | ||
Theorem | unisnif 32621 | Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) | ||
Theorem | brimage 32622 | Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) | ||
Theorem | brimageg 32623 | Closed form of brimage 32622. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) | ||
Theorem | funimage 32624 | Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Fun Image𝐴 | ||
Theorem | fnimage 32625* | Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} | ||
Theorem | imageval 32626* | The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Image𝑅 = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) | ||
Theorem | fvimage 32627 | Value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 “ 𝐴) ∈ 𝑊) → (Image𝑅‘𝐴) = (𝑅 “ 𝐴)) | ||
Theorem | brcart 32628 | Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) | ||
Theorem | brdomain 32629 | Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) | ||
Theorem | brrange 32630 | Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) | ||
Theorem | brdomaing 32631 | Closed form of brdomain 32629. (Contributed by Scott Fenton, 2-May-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) | ||
Theorem | brrangeg 32632 | Closed form of brrange 32630. (Contributed by Scott Fenton, 3-May-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) | ||
Theorem | brimg 32633 | Binary relation form of the Img function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Img𝐶 ↔ 𝐶 = (𝐴 “ 𝐵)) | ||
Theorem | brapply 32634 | Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Apply𝐶 ↔ 𝐶 = (𝐴‘𝐵)) | ||
Theorem | brcup 32635 | Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cup𝐶 ↔ 𝐶 = (𝐴 ∪ 𝐵)) | ||
Theorem | brcap 32636 | Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cap𝐶 ↔ 𝐶 = (𝐴 ∩ 𝐵)) | ||
Theorem | brsuccf 32637 | Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Succ𝐵 ↔ 𝐵 = suc 𝐴) | ||
Theorem | funpartlem 32638* | Lemma for funpartfun 32639. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.) |
⊢ (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}) | ||
Theorem | funpartfun 32639 | The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ Fun Funpart𝐹 | ||
Theorem | funpartss 32640 | The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Funpart𝐹 ⊆ 𝐹 | ||
Theorem | funpartfv 32641 | The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (Funpart𝐹‘𝐴) = (𝐹‘𝐴) | ||
Theorem | fullfunfnv 32642 | The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ FullFun𝐹 Fn V | ||
Theorem | fullfunfv 32643 | The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | ||
Theorem | brfullfun 32644 | A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) | ||
Theorem | brrestrict 32645 | Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Restrict𝐶 ↔ 𝐶 = (𝐴 ↾ 𝐵)) | ||
Theorem | dfrecs2 32646 | A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.) |
⊢ recs(𝐹) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict)))) | ||
Theorem | dfrdg4 32647 | A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ rec(𝐹, 𝐴) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (((V × {∅}) × {∪ {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) | ||
Theorem | dfint3 32648 | Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) | ||
Theorem | imagesset 32649 | The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.) |
⊢ Image◡ SSet ⊆ SSet | ||
Theorem | brub 32650* | Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | ||
Theorem | brlb 32651* | Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) | ||
Syntax | caltop 32652 | Declare the syntax for an alternate ordered pair. |
class ⟪𝐴, 𝐵⟫ | ||
Syntax | caltxp 32653 | Declare the syntax for an alternate Cartesian product. |
class (𝐴 ×× 𝐵) | ||
Definition | df-altop 32654 | An alternative definition of ordered pairs. This definition removes a hypothesis from its defining theorem (see altopth 32665), making it more convenient in some circumstances. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | ||
Definition | df-altxp 32655* | Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012.) |
⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} | ||
Theorem | altopex 32656 | Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ⟪𝐴, 𝐵⟫ ∈ V | ||
Theorem | altopthsn 32657 | Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | ||
Theorem | altopeq12 32658 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) | ||
Theorem | altopeq1 32659 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) | ||
Theorem | altopeq2 32660 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) | ||
Theorem | altopth1 32661 | Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐴 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐴 = 𝐶)) | ||
Theorem | altopth2 32662 | Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (𝐵 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷)) | ||
Theorem | altopthg 32663 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | altopthbg 32664 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | altopth 32665 | The alternate ordered pair theorem. If two alternate ordered pairs are equal, their first elements are equal and their second elements are equal. Note that 𝐶 and 𝐷 are not required to be a set due to a peculiarity of our specific ordered pair definition, as opposed to the regular ordered pairs used here, which (as in opth 5176), requires 𝐷 to be a set. (Contributed by Scott Fenton, 23-Mar-2012.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altopthb 32666 | Alternate ordered pair theorem with different sethood requirements. See altopth 32665 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altopthc 32667 | Alternate ordered pair theorem with different sethood requirements. See altopth 32665 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altopthd 32668 | Alternate ordered pair theorem with different sethood requirements. See altopth 32665 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | altxpeq1 32669 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) | ||
Theorem | altxpeq2 32670 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
⊢ (𝐴 = 𝐵 → (𝐶 ×× 𝐴) = (𝐶 ×× 𝐵)) | ||
Theorem | elaltxp 32671* | Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.) |
⊢ (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫) | ||
Theorem | altopelaltxp 32672 | Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5391, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.) |
⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | ||
Theorem | altxpsspw 32673 | An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) | ||
Theorem | altxpexg 32674 | The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) | ||
Theorem | rankaltopb 32675 | Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵))) | ||
Theorem | nfaltop 32676 | Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ | ||
Theorem | sbcaltop 32677* | Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) | ||
Syntax | cofs 32678 | Declare the syntax for the outer five segment configuration. |
class OuterFiveSeg | ||
Definition | df-ofs 32679* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (ax5seg 26287). See brofs 32701 and 5segofs 32702 for how it is used. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) |
⊢ OuterFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑏〉Cgr〈𝑥, 𝑦〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} | ||
Theorem | cgrrflx2d 32680 | Deduction form of axcgrrflx 26263. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) | ||
Theorem | cgrtr4d 32681 | Deduction form of axcgrtr 26264. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
Theorem | cgrtr4and 32682 | Deduction form of axcgrtr 26264. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
Theorem | cgrrflx 32683 | Reflexivity law for congruence. Theorem 2.1 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
Theorem | cgrrflxd 32684 | Deduction form of cgrrflx 32683. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
Theorem | cgrcomim 32685 | Congruence commutes on the two sides. Implication version. Theorem 2.2 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) | ||
Theorem | cgrcom 32686 | Congruence commutes between the two sides. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) | ||
Theorem | cgrcomand 32687 | Deduction form of cgrcom 32686. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉) | ||
Theorem | cgrtr 32688 | Transitivity law for congruence. Theorem 2.3 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 24-Sep-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉)) | ||
Theorem | cgrtrand 32689 | Deduction form of cgrtr 32688. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) | ||
Theorem | cgrtr3 32690 | Transitivity law for congruence. (Contributed by Scott Fenton, 7-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉)) | ||
Theorem | cgrtr3and 32691 | Deduction form of cgrtr3 32690. (Contributed by Scott Fenton, 13-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) | ||
Theorem | cgrcoml 32692 | Congruence commutes on the left. Biconditional version of Theorem 2.4 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐶, 𝐷〉)) | ||
Theorem | cgrcomr 32693 | Congruence commutes on the right. Biconditional version of Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉)) | ||
Theorem | cgrcomlr 32694 | Congruence commutes on both sides. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉)) | ||
Theorem | cgrcomland 32695 | Deduction form of cgrcoml 32692. (Contributed by Scott Fenton, 14-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐶, 𝐷〉) | ||
Theorem | cgrcomrand 32696 | Deduction form of cgrcoml 32692. (Contributed by Scott Fenton, 14-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉) | ||
Theorem | cgrcomlrand 32697 | Deduction form of cgrcomlr 32694. (Contributed by Scott Fenton, 14-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉) | ||
Theorem | cgrtriv 32698 | Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐴〉Cgr〈𝐵, 𝐵〉) | ||
Theorem | cgrid2 32699 | Identity law for congruence. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐴〉Cgr〈𝐵, 𝐶〉 → 𝐵 = 𝐶)) | ||
Theorem | cgrdegen 32700 | Two congruent segments are either both degenerate or both nondegenerate. (Contributed by Scott Fenton, 12-Jun-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |