Home | Metamath
Proof Explorer Theorem List (p. 327 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | reprf 32601 | Members of the representation of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴 as functions. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) ⇒ ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) | ||
Theorem | reprsum 32602* | Sums of values of the members of the representation of 𝑀 equal 𝑀. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) ⇒ ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) | ||
Theorem | reprle 32603 | Upper bound to the terms in the representations of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) & ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) ⇒ ⊢ (𝜑 → (𝐶‘𝑋) ≤ 𝑀) | ||
Theorem | reprsuc 32604* | Express the representations recursively. (Contributed by Thierry Arnoux, 5-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ 𝐹 = (𝑐 ∈ (𝐴(repr‘𝑆)(𝑀 − 𝑏)) ↦ (𝑐 ∪ {〈𝑆, 𝑏〉})) ⇒ ⊢ (𝜑 → (𝐴(repr‘(𝑆 + 1))𝑀) = ∪ 𝑏 ∈ 𝐴 ran 𝐹) | ||
Theorem | reprfi 32605 | Bounded representations are finite sets. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) ∈ Fin) | ||
Theorem | reprss 32606 | Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) | ||
Theorem | reprinrn 32607* | Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐵))) | ||
Theorem | reprlt 32608 | There are no representations of 𝑀 with more than 𝑀 terms. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 < 𝑆) ⇒ ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅) | ||
Theorem | hashreprin 32609* | Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) ⇒ ⊢ (𝜑 → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) | ||
Theorem | reprgt 32610 | There are no representations of more than (𝑆 · 𝑁) with only 𝑆 terms bounded by 𝑁. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ⊆ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → (𝑆 · 𝑁) < 𝑀) ⇒ ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅) | ||
Theorem | reprinfz1 32611 | For the representation of 𝑁, it is sufficient to consider nonnegative integers up to 𝑁. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) ⇒ ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑁) = ((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑁)) | ||
Theorem | reprfi2 32612 | Corollary of reprinfz1 32611. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) ⇒ ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑁) ∈ Fin) | ||
Theorem | reprfz1 32613 | Corollary of reprinfz1 32611. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → (ℕ(repr‘𝑆)𝑁) = ((1...𝑁)(repr‘𝑆)𝑁)) | ||
Theorem | hashrepr 32614* | Develop the number of representations of an integer 𝑀 as a sum of nonnegative integers in set 𝐴. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → (♯‘(𝐴(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) | ||
Theorem | reprpmtf1o 32615* | Transposing 0 and 𝑋 maps representations with a condition on the first index to transpositions with the same condition on the index 𝑋. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) & ⊢ 𝑂 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘0) ∈ 𝐵} & ⊢ 𝑃 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑋) ∈ 𝐵} & ⊢ 𝑇 = if(𝑋 = 0, ( I ↾ (0..^𝑆)), ((pmTrsp‘(0..^𝑆))‘{𝑋, 0})) & ⊢ 𝐹 = (𝑐 ∈ 𝑃 ↦ (𝑐 ∘ 𝑇)) ⇒ ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑂) | ||
Theorem | reprdifc 32616* | Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ∪ 𝑥 ∈ (0..^𝑆)𝐶) | ||
Theorem | chpvalz 32617* | Value of the second Chebyshev function, or summatory of the von Mangoldt function. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑛 ∈ (1...𝑁)(Λ‘𝑛)) | ||
Theorem | chtvalz 32618* | Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛)) | ||
Theorem | breprexplema 32619* | Lemma for breprexp 32622 (induction step for weighted sums over representations). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ≤ ((𝑆 + 1) · 𝑁)) & ⊢ (((𝜑 ∧ 𝑥 ∈ (0..^(𝑆 + 1))) ∧ 𝑦 ∈ ℕ) → ((𝐿‘𝑥)‘𝑦) ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑆 + 1))𝑀)∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿‘𝑎)‘(𝑑‘𝑎)) = Σ𝑏 ∈ (1...𝑁)Σ𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀 − 𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑑‘𝑎)) · ((𝐿‘𝑆)‘𝑏))) | ||
Theorem | breprexplemb 32620 | Lemma for breprexp 32622 (closure). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) & ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) & ⊢ (𝜑 → 𝑌 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐿‘𝑋)‘𝑌) ∈ ℂ) | ||
Theorem | breprexplemc 32621* | Lemma for breprexp 32622 (induction step). (Contributed by Thierry Arnoux, 6-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) & ⊢ (𝜑 → 𝑇 ∈ ℕ0) & ⊢ (𝜑 → (𝑇 + 1) ≤ 𝑆) & ⊢ (𝜑 → ∏𝑎 ∈ (0..^𝑇)Σ𝑏 ∈ (1...𝑁)(((𝐿‘𝑎)‘𝑏) · (𝑍↑𝑏)) = Σ𝑚 ∈ (0...(𝑇 · 𝑁))Σ𝑑 ∈ ((1...𝑁)(repr‘𝑇)𝑚)(∏𝑎 ∈ (0..^𝑇)((𝐿‘𝑎)‘(𝑑‘𝑎)) · (𝑍↑𝑚))) ⇒ ⊢ (𝜑 → ∏𝑎 ∈ (0..^(𝑇 + 1))Σ𝑏 ∈ (1...𝑁)(((𝐿‘𝑎)‘𝑏) · (𝑍↑𝑏)) = Σ𝑚 ∈ (0...((𝑇 + 1) · 𝑁))Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑇 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑇 + 1))((𝐿‘𝑎)‘(𝑑‘𝑎)) · (𝑍↑𝑚))) | ||
Theorem | breprexp 32622* | Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms. This is a general formulation which allows logarithmic weighting of the sums (see https://mathoverflow.net/questions/253246) and a mix of different smoothing functions taken into account in 𝐿. See breprexpnat 32623 for the simple case presented in the proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 6-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) ⇒ ⊢ (𝜑 → ∏𝑎 ∈ (0..^𝑆)Σ𝑏 ∈ (1...𝑁)(((𝐿‘𝑎)‘𝑏) · (𝑍↑𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (𝑍↑𝑚))) | ||
Theorem | breprexpnat 32623* | Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms of elements of 𝐴, bounded by 𝑁. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍↑𝑏) & ⊢ 𝑅 = (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) ⇒ ⊢ (𝜑 → (𝑃↑𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍↑𝑚))) | ||
Syntax | cvts 32624 | The Vinogradov trigonometric sums. |
class vts | ||
Definition | df-vts 32625* | Define the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) | ||
Theorem | vtsval 32626* | Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) | ||
Theorem | vtscl 32627 | Closure of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) ∈ ℂ) | ||
Theorem | vtsprod 32628* | Express the Vinogradov trigonometric sums to the power of 𝑆 (Contributed by Thierry Arnoux, 12-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) ⇒ ⊢ (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋))))) | ||
Theorem | circlemeth 32629* | The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) ⇒ ⊢ (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
Theorem | circlemethnat 32630* | The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) & ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ⊆ ℕ & ⊢ 𝑆 ∈ ℕ ⇒ ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 | ||
Theorem | circlevma 32631* | The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
Theorem | circlemethhgt 32632* | The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions 𝐻 and 𝐾. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
⊢ (𝜑 → 𝐻:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐾:ℕ⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
Axiom | ax-hgt749 32633* | Statement 7.49 of [Helfgott] p. 70. For a sufficiently big odd 𝑁, this postulates the existence of smoothing functions ℎ (eta star) and 𝑘 (eta plus) such that the lower bound for the circle integral is big enough. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((;10↑;27) ≤ 𝑛 → ∃ℎ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55) ∧ ∀𝑚 ∈ ℕ (ℎ‘𝑚) ≤ (1._4_14) ∧ ((0._0_0_0_4_2_2_48) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) | ||
Axiom | ax-ros335 32634 | Theorem 12. of [RosserSchoenfeld] p. 71. Theorem chpo1ubb 26638 states that the ψ function is bounded by a linear term; this axiom postulates an upper bound for that linear term. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ ∀𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1._0_3_8_83) · 𝑥) | ||
Axiom | ax-ros336 32635 | Theorem 13. of [RosserSchoenfeld] p. 71. Theorem chpchtlim 26636 states that the ψ and θ function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62) · (√‘𝑥)) | ||
Theorem | hgt750lemc 32636* | An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1._0_3_8_83) · 𝑁)) | ||
Theorem | hgt750lemd 32637* | An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1._4_2_63) · (√‘𝑁))) | ||
Theorem | hgt749d 32638* | A deduction version of ax-hgt749 32633. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → ∃ℎ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55) ∧ ∀𝑚 ∈ ℕ (ℎ‘𝑚) ≤ (1._4_14) ∧ ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) | ||
Theorem | logdivsqrle 32639 | Conditions for ((log x ) / ( sqrt 𝑥)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (exp‘2) ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴))) | ||
Theorem | hgt750lem 32640 | Lemma for tgoldbachgtd 32651. (Contributed by Thierry Arnoux, 17-Dec-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (;10↑;27) ≤ 𝑁) → ((7._3_48) · ((log‘𝑁) / (√‘𝑁))) < (0._0_0_0_4_2_2_48)) | ||
Theorem | hgt750lem2 32641 | Decimal multiplication galore! (Contributed by Thierry Arnoux, 26-Dec-2021.) |
⊢ (3 · ((((1._0_7_9_9_55)↑2) · (1._4_14)) · ((1._4_2_63) · (1._0_3_8_83)))) < (7._3_48) | ||
Theorem | hgt750lemf 32642* | Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℝ) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ 𝑃) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ 𝑄) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ 𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) | ||
Theorem | hgt750lemg 32643* | Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation 𝑇 to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ 𝐹 = (𝑐 ∈ 𝑅 ↦ (𝑐 ∘ 𝑇)) & ⊢ (𝜑 → 𝑇:(0..^3)–1-1-onto→(0..^3)) & ⊢ (𝜑 → 𝑁:(0..^3)⟶ℕ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑅) ⇒ ⊢ (𝜑 → ((𝐿‘((𝐹‘𝑁)‘0)) · ((𝐿‘((𝐹‘𝑁)‘1)) · (𝐿‘((𝐹‘𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2))))) | ||
Theorem | oddprm2 32644* | Two ways to write the set of odd primes. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ⇒ ⊢ (ℙ ∖ {2}) = (𝑂 ∩ ℙ) | ||
Theorem | hgt750lemb 32645* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ≤ 𝑁) & ⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⇒ ⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) | ||
Theorem | hgt750lema 32646* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ≤ 𝑁) & ⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} & ⊢ 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})))) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) | ||
Theorem | hgt750leme 32647* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7._3_48) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2))) | ||
Theorem | tgoldbachgnn 32648* | Lemma for tgoldbachgtd 32651. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ) | ||
Theorem | tgoldbachgtde 32649* | Lemma for tgoldbachgtd 32651. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) & ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) ⇒ ⊢ (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) | ||
Theorem | tgoldbachgtda 32650* | Lemma for tgoldbachgtd 32651. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) & ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) ⇒ ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | ||
Theorem | tgoldbachgtd 32651* | Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | ||
Theorem | tgoldbachgt 32652* | Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) | ||
This definition has been superseded by DimTarskiG≥ and is no longer needed in the main part of set.mm. It is only kept here for reference. | ||
Syntax | cstrkg2d 32653 | Extends class notation with the class of geometries fulfilling the planarity axioms. |
class TarskiG2D | ||
Definition | df-trkg2d 32654* | Define the class of geometries fulfilling the lower dimension axiom, Axiom A8 of [Schwabhauser] p. 12, and the upper dimension axiom, Axiom A9 of [Schwabhauser] p. 13, for dimension 2. (Contributed by Thierry Arnoux, 14-Mar-2019.) (New usage is discouraged.) |
⊢ TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} | ||
Theorem | istrkg2d 32655* | Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) | ||
Theorem | axtglowdim2ALTV 32656* | Alternate version of axtglowdim2 26840. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG2D) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) | ||
Theorem | axtgupdim2ALTV 32657 | Alternate version of axtgupdim2 26841. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑋 − 𝑈) = (𝑋 − 𝑉)) & ⊢ (𝜑 → (𝑌 − 𝑈) = (𝑌 − 𝑉)) & ⊢ (𝜑 → (𝑍 − 𝑈) = (𝑍 − 𝑉)) & ⊢ (𝜑 → 𝐺 ∈ TarskiG2D) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) | ||
Syntax | cafs 32658 | Declare the syntax for the outer five segment configuration. |
class AFS | ||
Definition | df-afs 32659* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (axtg5seg 26835). See df-ofs 34294. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) (Revised by Thierry Arnoux, 15-Mar-2019.) |
⊢ AFS = (𝑔 ∈ TarskiG ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / ℎ][(Itv‘𝑔) / 𝑖]∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 ∃𝑐 ∈ 𝑝 ∃𝑑 ∈ 𝑝 ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ∃𝑤 ∈ 𝑝 (𝑒 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑓 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 ∈ (𝑎𝑖𝑐) ∧ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ((𝑎ℎ𝑏) = (𝑥ℎ𝑦) ∧ (𝑏ℎ𝑐) = (𝑦ℎ𝑧)) ∧ ((𝑎ℎ𝑑) = (𝑥ℎ𝑤) ∧ (𝑏ℎ𝑑) = (𝑦ℎ𝑤))))}) | ||
Theorem | afsval 32660* | Value of the AFS relation for a given geometry structure. (Contributed by Thierry Arnoux, 20-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) ⇒ ⊢ (𝜑 → (AFS‘𝐺) = {〈𝑒, 𝑓〉 ∣ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ∃𝑤 ∈ 𝑃 (𝑒 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑓 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 ∈ (𝑎𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝑎 − 𝑏) = (𝑥 − 𝑦) ∧ (𝑏 − 𝑐) = (𝑦 − 𝑧)) ∧ ((𝑎 − 𝑑) = (𝑥 − 𝑤) ∧ (𝑏 − 𝑑) = (𝑦 − 𝑤))))}) | ||
Theorem | brafs 32661 | Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑂 = (AFS‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑊 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝑋, 𝑌〉, 〈𝑍, 𝑊〉〉 ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍)) ∧ ((𝐴 − 𝐵) = (𝑋 − 𝑌) ∧ (𝐵 − 𝐶) = (𝑌 − 𝑍)) ∧ ((𝐴 − 𝐷) = (𝑋 − 𝑊) ∧ (𝐵 − 𝐷) = (𝑌 − 𝑊))))) | ||
Theorem | tg5segofs 32662 | Rephrase axtg5seg 26835 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝑂 = (AFS‘𝐺) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑃) & ⊢ (𝜑 → 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐻 − 𝐼)) | ||
Syntax | clpad 32663 | Extend class notation with the leftpad function. |
class leftpad | ||
Definition | df-lpad 32664* | Define the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))) | ||
Theorem | lpadval 32665 | Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) | ||
Theorem | lpadlem1 32666 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆) | ||
Theorem | lpadlem3 32667 | Lemma for lpadlen1 32668. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐿 ≤ (♯‘𝑊)) ⇒ ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) = ∅) | ||
Theorem | lpadlen1 32668 | Length of a left-padded word, in the case the length of the given word 𝑊 is at least the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐿 ≤ (♯‘𝑊)) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊)) | ||
Theorem | lpadlem2 32669 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) ⇒ ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) | ||
Theorem | lpadlen2 32670 | Length of a left-padded word, in the case the given word 𝑊 is shorter than the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿) | ||
Theorem | lpadmax 32671 | Length of a left-padded word, in the general case, expressed with an if statement. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)) | ||
Theorem | lpadleft 32672 | The contents of prefix of a left-padded word is always the letter 𝐶. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) ⇒ ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) | ||
Theorem | lpadright 32673 | The suffix of a left-padded word the original word 𝑊. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑊))) ⇒ ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊‘𝑁)) | ||
Note: On 4-Sep-2016 and after, 745 unused theorems were deleted from this mathbox, and 359 theorems used only once or twice were merged into their referencing theorems. The originals can be recovered from set.mm versions prior to this date. | ||
Syntax | w-bnj17 32674 | Extend wff notation with the 4-way conjunction. (New usage is discouraged.) |
wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) | ||
Definition | df-bnj17 32675 | Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | ||
Syntax | c-bnj14 32676 | Extend class notation with the function giving: the class of all elements of 𝐴 that are "smaller" than 𝑋 according to 𝑅. (New usage is discouraged.) |
class pred(𝑋, 𝐴, 𝑅) | ||
Definition | df-bnj14 32677* | Define the function giving: the class of all elements of 𝐴 that are "smaller" than 𝑋 according to 𝑅. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | ||
Syntax | w-bnj13 32678 | Extend wff notation with the following predicate: 𝑅 is set-like on 𝐴. (New usage is discouraged.) |
wff 𝑅 Se 𝐴 | ||
Definition | df-bnj13 32679* | Define the following predicate: 𝑅 is set-like on 𝐴. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) | ||
Syntax | w-bnj15 32680 | Extend wff notation with the following predicate: 𝑅 is both well-founded and set-like on 𝐴. (New usage is discouraged.) |
wff 𝑅 FrSe 𝐴 | ||
Definition | df-bnj15 32681 | Define the following predicate: 𝑅 is both well-founded and set-like on 𝐴. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | ||
Syntax | c-bnj18 32682 | Extend class notation with the function giving: the transitive closure of 𝑋 in 𝐴 by 𝑅. (New usage is discouraged.) |
class trCl(𝑋, 𝐴, 𝑅) | ||
Definition | df-bnj18 32683* | Define the function giving: the transitive closure of 𝑋 in 𝐴 by 𝑅. This definition has been designed for facilitating verification that it is eliminable and that the $d restrictions are sound and complete. For a more readable definition see bnj882 32915. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ trCl(𝑋, 𝐴, 𝑅) = ∪ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) | ||
Syntax | w-bnj19 32684 | Extend wff notation with the following predicate: 𝐵 is transitive for 𝐴 and 𝑅. (New usage is discouraged.) |
wff TrFo(𝐵, 𝐴, 𝑅) | ||
Definition | df-bnj19 32685* | Define the following predicate: 𝐵 is transitive for 𝐴 and 𝑅. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥 ∈ 𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵) | ||
Theorem | bnj170 32686 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) | ||
Theorem | bnj240 32687 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜓 → 𝜓′) & ⊢ (𝜒 → 𝜒′) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓′ ∧ 𝜒′)) | ||
Theorem | bnj248 32688 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃)) | ||
Theorem | bnj250 32689 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | ||
Theorem | bnj251 32690 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | ||
Theorem | bnj252 32691 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃))) | ||
Theorem | bnj253 32692 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj255 32693 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃))) | ||
Theorem | bnj256 32694 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
Theorem | bnj257 32695 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ 𝜃 ∧ 𝜒)) | ||
Theorem | bnj258 32696 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒)) | ||
Theorem | bnj268 32697 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓 ∧ 𝜃)) | ||
Theorem | bnj290 32698 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜃 ∧ 𝜓)) | ||
Theorem | bnj291 32699 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) | ||
Theorem | bnj312 32700 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒 ∧ 𝜃)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |