| Metamath
Proof Explorer Theorem List (p. 327 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mpomptxf 32601* | Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Thierry Arnoux, 31-Mar-2018.) |
| ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) ⇒ ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) | ||
| Theorem | of0r 32602 | Function operation with the empty function. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ (𝐹 ∘f 𝑅∅) = ∅ | ||
| Theorem | elmaprd 32603 | Deduction associated with elmapd 8852. Reverse direction of elmapdd 8853. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
| Theorem | suppovss 32604* | A bound for the support of an operation. (Contributed by Thierry Arnoux, 19-Jul-2023.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑦 ∈ 𝐵 ↦ 𝐶)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝐷) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) | ||
| Theorem | elsuppfnd 32605 | Deduce membership in the support of a function. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → (𝐹‘𝑋) ≠ 𝑍) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐹 supp 𝑍)) | ||
| Theorem | fisuppov1 32606* | Formula building theorem for finite support: operator with left annihilator. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 0 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐸) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ( 0 𝑂𝑦) = 𝑍) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝐹‘𝑥)𝑂𝐵)) finSupp 𝑍) | ||
| Theorem | suppun2 32607 | The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝐹 ∪ 𝐺) supp 𝑍) = ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) | ||
| Theorem | fdifsupp 32608 | Express the support of a function 𝐹 outside of 𝐵 in two different ways. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐴) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐴 ∖ 𝐵)) supp 𝑍) = ((𝐹 supp 𝑍) ∖ 𝐵)) | ||
| Theorem | suppiniseg 32609 | Relation between the support (𝐹 supp 𝑍) and the initial segment (◡𝐹 “ {𝑍}). (Contributed by Thierry Arnoux, 25-Jun-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) = (◡𝐹 “ {𝑍})) | ||
| Theorem | fsuppinisegfi 32610 | The initial segment (◡𝐹 “ {𝑌}) of a nonzero 𝑌 is finite if 𝐹 has finite support. (Contributed by Thierry Arnoux, 21-Jun-2024.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ (V ∖ { 0 })) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (◡𝐹 “ {𝑌}) ∈ Fin) | ||
| Theorem | fressupp 32611 | The restriction of a function to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ (𝐹 supp 𝑍)) = (𝐹 ∖ (V × {𝑍}))) | ||
| Theorem | fdifsuppconst 32612 | A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⇒ ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) | ||
| Theorem | ressupprn 32613 | The range of a function restricted to its support. (Contributed by Thierry Arnoux, 25-Jun-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 0 ∈ 𝑊) → ran (𝐹 ↾ (𝐹 supp 0 )) = (ran 𝐹 ∖ { 0 })) | ||
| Theorem | supppreima 32614 | Express the support of a function as the preimage of its range except zero. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (ran 𝐹 ∖ {𝑍}))) | ||
| Theorem | fsupprnfi 32615 | Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024.) |
| ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ ( 0 ∈ 𝑊 ∧ 𝐹 finSupp 0 )) → ran 𝐹 ∈ Fin) | ||
| Theorem | mptiffisupp 32616* | Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝑍)) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
| Theorem | cosnopne 32617 | Composition of two ordered pair singletons with non-matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ≠ 𝐷) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐷〉}) = ∅) | ||
| Theorem | cosnop 32618 | Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) | ||
| Theorem | cnvprop 32619 | Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉}) | ||
| Theorem | brprop 32620 | Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) | ||
| Theorem | mptprop 32621* | Rewrite pairs of ordered pairs as mapping to functions. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 = 𝐴, 𝐵, 𝐷))) | ||
| Theorem | coprprop 32622 | Composition of two pairs of ordered pairs with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ≠ 𝐹) ⇒ ⊢ (𝜑 → ({〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} ∘ {〈𝐸, 𝐴〉, 〈𝐹, 𝐶〉}) = {〈𝐸, 𝐵〉, 〈𝐹, 𝐷〉}) | ||
| Theorem | fmptunsnop 32623* | Two ways to express a function with a value replaced. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 = 𝑋, 𝑌, (𝐹‘𝑥))) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})) | ||
| Theorem | gtiso 32624 | Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ*) → (𝐹 Isom < , ◡ < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ◡ ≤ (𝐴, 𝐵))) | ||
| Theorem | isoun 32625* | Infer an isomorphism from a union of two isomorphisms. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
| ⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → 𝑥𝑅𝑦) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷) → 𝑧𝑆𝑤) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) → ¬ 𝑥𝑅𝑦) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐵) → ¬ 𝑧𝑆𝑤) & ⊢ (𝜑 → (𝐴 ∩ 𝐶) = ∅) & ⊢ (𝜑 → (𝐵 ∩ 𝐷) = ∅) ⇒ ⊢ (𝜑 → (𝐻 ∪ 𝐺) Isom 𝑅, 𝑆 ((𝐴 ∪ 𝐶), (𝐵 ∪ 𝐷))) | ||
| Theorem | disjdsct 32626* | A disjoint collection is distinct, i.e. each set in this collection is different of all others, provided that it does not contain the empty set This can be expressed as "the converse of the mapping function is a function", or "the mapping function is single-rooted". (Cf. funcnv 6604) (Contributed by Thierry Arnoux, 28-Feb-2017.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (𝑉 ∖ {∅})) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Fun ◡(𝑥 ∈ 𝐴 ↦ 𝐵)) | ||
| Theorem | df1stres 32627* | Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ (1st ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑥) | ||
| Theorem | df2ndres 32628* | Definition for a restriction of the 2nd (second member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ (2nd ↾ (𝐴 × 𝐵)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝑦) | ||
| Theorem | 1stpreimas 32629 | The preimage of a singleton. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
| ⊢ ((Rel 𝐴 ∧ 𝑋 ∈ 𝑉) → (◡(1st ↾ 𝐴) “ {𝑋}) = ({𝑋} × (𝐴 “ {𝑋}))) | ||
| Theorem | 1stpreima 32630 | The preimage by 1st is a 'vertical band'. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
| ⊢ (𝐴 ⊆ 𝐵 → (◡(1st ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐴 × 𝐶)) | ||
| Theorem | 2ndpreima 32631 | The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017.) |
| ⊢ (𝐴 ⊆ 𝐶 → (◡(2nd ↾ (𝐵 × 𝐶)) “ 𝐴) = (𝐵 × 𝐴)) | ||
| Theorem | curry2ima 32632* | The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
| ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ⇒ ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) | ||
| Theorem | preiman0 32633 | The preimage of a nonempty set is nonempty. (Contributed by Thierry Arnoux, 9-Jun-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → (◡𝐹 “ 𝐴) ≠ ∅) | ||
| Theorem | intimafv 32634* | The intersection of an image set, as an indexed intersection of function values. (Contributed by Thierry Arnoux, 15-Jun-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ∩ (𝐹 “ 𝐴) = ∩ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
| Theorem | imafi2 32635 | The image by a finite set is finite. See also imafi 9323. (Contributed by Thierry Arnoux, 25-Apr-2020.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 “ 𝐵) ∈ Fin) | ||
| Theorem | unifi3 32636 | If a union is finite, then all its elements are finite. See unifi 9354. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
| ⊢ (∪ 𝐴 ∈ Fin → 𝐴 ⊆ Fin) | ||
| Theorem | snct 32637 | A singleton is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≼ ω) | ||
| Theorem | prct 32638 | An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ≼ ω) | ||
| Theorem | mpocti 32639* | An operation is countable if both its domains are countable. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
| ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 ⇒ ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ≼ ω) | ||
| Theorem | abrexct 32640* | An image set of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.) |
| ⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) | ||
| Theorem | mptctf 32641 | A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | ||
| Theorem | abrexctf 32642* | An image set of a countable set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≼ ω → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≼ ω) | ||
| Theorem | padct 32643* | Index a countable set with integers and pad with 𝑍. (Contributed by Thierry Arnoux, 1-Jun-2020.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝑍 ∈ 𝑉 ∧ ¬ 𝑍 ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {𝑍}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) | ||
| Theorem | f1od2 32644* | Sufficient condition for a binary function expressed in maps-to notation to be bijective. (Contributed by Thierry Arnoux, 17-Aug-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) & ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) ⇒ ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) | ||
| Theorem | fcobij 32645* | Composing functions with a bijection yields a bijection between sets of functions. (Contributed by Thierry Arnoux, 25-Aug-2017.) |
| ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑓 ∈ (𝑆 ↑m 𝑅) ↦ (𝐺 ∘ 𝑓)):(𝑆 ↑m 𝑅)–1-1-onto→(𝑇 ↑m 𝑅)) | ||
| Theorem | fcobijfs 32646* | Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9418. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝑂 ∈ 𝑆) & ⊢ 𝑄 = (𝐺‘𝑂) & ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} & ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} ⇒ ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) | ||
| Theorem | suppss3 32647* | Deduce a function's support's inclusion in another function's support. (Contributed by Thierry Arnoux, 7-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑍) → 𝐵 = 𝑍) ⇒ ⊢ (𝜑 → (𝐺 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | ||
| Theorem | fsuppcurry1 32648* | Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
| ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐶𝐹𝑥)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
| Theorem | fsuppcurry2 32649* | Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023.) |
| ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → 𝐺 finSupp 𝑍) | ||
| Theorem | offinsupp1 32650* | Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) & ⊢ (𝜑 → 𝐹 finSupp 𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) | ||
| Theorem | ffs2 32651 | Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq 8172. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| ⊢ 𝐶 = (𝐵 ∖ {𝑍}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) | ||
| Theorem | ffsrn 32652 | The range of a finitely supported function is finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
| ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ Fin) | ||
| Theorem | resf1o 32653* | Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
| ⊢ 𝑋 = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (◡𝑓 “ (𝐵 ∖ {𝑍})) ⊆ 𝐶} & ⊢ 𝐹 = (𝑓 ∈ 𝑋 ↦ (𝑓 ↾ 𝐶)) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ⊆ 𝐴) ∧ 𝑍 ∈ 𝐵) → 𝐹:𝑋–1-1-onto→(𝐵 ↑m 𝐶)) | ||
| Theorem | maprnin 32654* | Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∩ 𝐶) ↑m 𝐴) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ran 𝑓 ⊆ 𝐶} | ||
| Theorem | fpwrelmapffslem 32655* | Lemma for fpwrelmapffs 32657. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ (𝜑 → 𝐹:𝐴⟶𝒫 𝐵) & ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))}) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))) | ||
| Theorem | fpwrelmap 32656* | Define a canonical mapping between functions from 𝐴 into subsets of 𝐵 and the relations with domain 𝐴 and range within 𝐵. Note that the same relation is used in axdc2lem 10460 and marypha2lem1 9445. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) ⇒ ⊢ 𝑀:(𝒫 𝐵 ↑m 𝐴)–1-1-onto→𝒫 (𝐴 × 𝐵) | ||
| Theorem | fpwrelmapffs 32657* | Define a canonical mapping between finite relations (finite subsets of a cartesian product) and functions with finite support into finite subsets. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑀 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑓‘𝑥))}) & ⊢ 𝑆 = {𝑓 ∈ ((𝒫 𝐵 ∩ Fin) ↑m 𝐴) ∣ (𝑓 supp ∅) ∈ Fin} ⇒ ⊢ (𝑀 ↾ 𝑆):𝑆–1-1-onto→(𝒫 (𝐴 × 𝐵) ∩ Fin) | ||
| Theorem | sgnval2 32658 | Value of the signum of a real number, expresssed using absolute value. (Contributed by Thierry Arnoux, 9-Nov-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (sgn‘𝐴) = (𝐴 / (abs‘𝐴))) | ||
| Theorem | creq0 32659 | The real representation of complex numbers is zero iff both its terms are zero. Cf. crne0 12231. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 = 0 ∧ 𝐵 = 0) ↔ (𝐴 + (i · 𝐵)) = 0)) | ||
| Theorem | 1nei 32660 | The imaginary unit i is not one. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
| ⊢ 1 ≠ i | ||
| Theorem | 1neg1t1neg1 32661 | An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
| ⊢ (𝑁 ∈ {-1, 1} → (𝑁 · 𝑁) = 1) | ||
| Theorem | nnmulge 32662 | Multiplying by a positive integer 𝑀 yields greater than or equal nonnegative integers. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑀 · 𝑁)) | ||
| Theorem | submuladdd 32663 | The product of a difference and a sum. Cf. addmulsub 11697. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) − ((𝐵 · 𝐶) + (𝐵 · 𝐷)))) | ||
| Theorem | muldivdid 32664 | Distribution of division over addition with a multiplication. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (((𝐴 · 𝐵) + 𝐶) / 𝐵) = (𝐴 + (𝐶 / 𝐵))) | ||
| Theorem | binom2subadd 32665 | The difference of the squares of the sum and difference of two complex numbers 𝐴 and 𝐵. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵))) | ||
| Theorem | cjsubd 32666 | Complex conjugate distributes over subtraction. (Contributed by Thierry Arnoux, 1-Jul-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | ||
| Theorem | re0cj 32667 | The conjugate of a pure imaginary number is its negative. (Contributed by Thierry Arnoux, 25-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℜ‘𝐴) = 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) = -𝐴) | ||
| Theorem | receqid 32668 | Real numbers equal to their own reciprocal have absolute value 1. (Contributed by Thierry Arnoux, 9-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) = 𝐴 ↔ (abs‘𝐴) = 1)) | ||
| Theorem | pythagreim 32669 | A simplified version of the Pythagorean theorem, where the points 𝐴 and 𝐵 respectively lie on the imaginary and real axes, and the right angle is at the origin. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((abs‘(𝐵 − (i · 𝐴)))↑2) = ((𝐴↑2) + (𝐵↑2))) | ||
| Theorem | efiargd 32670 | The exponential of the "arg" function ℑ ∘ log, deduction version. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) | ||
| Theorem | arginv 32671 | The argument of the inverse of a complex number 𝐴. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → ¬ -𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (ℑ‘(log‘(1 / 𝐴))) = -(ℑ‘(log‘𝐴))) | ||
| Theorem | argcj 32672 | The argument of the conjugate of a complex number 𝐴. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → ¬ -𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (ℑ‘(log‘(∗‘𝐴))) = -(ℑ‘(log‘𝐴))) | ||
| Theorem | quad3d 32673 | Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019.) Deduction version. (Revised by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0) ⇒ ⊢ (𝜑 → (𝑋 = ((-𝐵 + (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)))) | ||
| Theorem | lt2addrd 32674* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
| Theorem | xrlelttric 32675 | Trichotomy law for extended reals. (Contributed by Thierry Arnoux, 12-Sep-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
| Theorem | xaddeq0 32676 | Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵)) | ||
| Theorem | rexmul2 32677 | If the result 𝐴 of an extended real multiplication is real, then its first factor 𝐵 is also real. See also rexmul 13285. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 0 < 𝐶) & ⊢ (𝜑 → 𝐴 = (𝐵 ·e 𝐶)) ⇒ ⊢ (𝜑 → 𝐵 ∈ ℝ) | ||
| Theorem | xrinfm 32678 | The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
| ⊢ inf(ℝ*, ℝ*, < ) = -∞ | ||
| Theorem | le2halvesd 32679 | A sum is less than the whole if each term is less than half. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ (𝐶 / 2)) & ⊢ (𝜑 → 𝐵 ≤ (𝐶 / 2)) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≤ 𝐶) | ||
| Theorem | xraddge02 32680 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → 𝐴 ≤ (𝐴 +𝑒 𝐵))) | ||
| Theorem | xrge0addge 32681 | A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 𝐴 ≤ (𝐴 +𝑒 𝐵)) | ||
| Theorem | xlt2addrd 32682* | If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ≠ -∞) & ⊢ (𝜑 → 𝐶 ≠ -∞) & ⊢ (𝜑 → 𝐴 < (𝐵 +𝑒 𝐶)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ* ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵 ∧ 𝑐 < 𝐶)) | ||
| Theorem | xrge0infss 32683* | Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
| ⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
| Theorem | xrge0infssd 32684 | Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) ⇒ ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) | ||
| Theorem | xrge0addcld 32685 | Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ (0[,]+∞)) | ||
| Theorem | xrge0subcld 32686 | Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) | ||
| Theorem | infxrge0lb 32687 | A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ≤ 𝐵) | ||
| Theorem | infxrge0glb 32688* | The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | ||
| Theorem | infxrge0gelb 32689* | The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | ||
| Theorem | xrofsup 32690 | The supremum is preserved by extended addition set operation. (Provided minus infinity is not involved as it does not behave well with addition.) (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| ⊢ (𝜑 → 𝑋 ⊆ ℝ*) & ⊢ (𝜑 → 𝑌 ⊆ ℝ*) & ⊢ (𝜑 → sup(𝑋, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → sup(𝑌, ℝ*, < ) ≠ -∞) & ⊢ (𝜑 → 𝑍 = ( +𝑒 “ (𝑋 × 𝑌))) ⇒ ⊢ (𝜑 → sup(𝑍, ℝ*, < ) = (sup(𝑋, ℝ*, < ) +𝑒 sup(𝑌, ℝ*, < ))) | ||
| Theorem | supxrnemnf 32691 | The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅ ∧ ¬ -∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) ≠ -∞) | ||
| Theorem | xnn0gt0 32692 | Nonzero extended nonnegative integers are strictly greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| ⊢ ((𝑁 ∈ ℕ0* ∧ 𝑁 ≠ 0) → 0 < 𝑁) | ||
| Theorem | xnn01gt 32693 | An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than 1. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
| ⊢ (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ {0, 1} ↔ 1 < 𝑁)) | ||
| Theorem | nn0xmulclb 32694 | Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| ⊢ (((𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0))) | ||
| Theorem | xnn0nn0d 32695 | Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0*) & ⊢ (𝜑 → 𝑁 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ0) | ||
| Theorem | xnn0nnd 32696 | Conditions for an extended nonnegative integer to be a positive integer. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0*) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ) | ||
| Theorem | joiniooico 32697 | Disjoint joining an open interval with a closed-below, open-above interval to form a closed-below, open-above interval. (Contributed by Thierry Arnoux, 26-Sep-2017.) |
| ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵[,)𝐶)) = ∅ ∧ ((𝐴(,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴(,)𝐶))) | ||
| Theorem | ubico 32698 | A right-open interval does not contain its right endpoint. (Contributed by Thierry Arnoux, 5-Apr-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴[,)𝐵)) | ||
| Theorem | xeqlelt 32699 | Equality in terms of 'less than or equal to', 'less than'. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | ||
| Theorem | eliccelico 32700 | Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |