Detailed syntax breakdown of Definition df-dioph
Step | Hyp | Ref
| Expression |
1 | | cdioph 40493 |
. 2
class
Dioph |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | cn0 12163 |
. . 3
class
ℕ0 |
4 | | vk |
. . . . 5
setvar 𝑘 |
5 | | vp |
. . . . 5
setvar 𝑝 |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑛 |
7 | | cuz 12511 |
. . . . . 6
class
ℤ≥ |
8 | 6, 7 | cfv 6418 |
. . . . 5
class
(ℤ≥‘𝑛) |
9 | | c1 10803 |
. . . . . . 7
class
1 |
10 | 4 | cv 1538 |
. . . . . . 7
class 𝑘 |
11 | | cfz 13168 |
. . . . . . 7
class
... |
12 | 9, 10, 11 | co 7255 |
. . . . . 6
class
(1...𝑘) |
13 | | cmzp 40460 |
. . . . . 6
class
mzPoly |
14 | 12, 13 | cfv 6418 |
. . . . 5
class
(mzPoly‘(1...𝑘)) |
15 | | vt |
. . . . . . . . . 10
setvar 𝑡 |
16 | 15 | cv 1538 |
. . . . . . . . 9
class 𝑡 |
17 | | vu |
. . . . . . . . . . 11
setvar 𝑢 |
18 | 17 | cv 1538 |
. . . . . . . . . 10
class 𝑢 |
19 | 9, 6, 11 | co 7255 |
. . . . . . . . . 10
class
(1...𝑛) |
20 | 18, 19 | cres 5582 |
. . . . . . . . 9
class (𝑢 ↾ (1...𝑛)) |
21 | 16, 20 | wceq 1539 |
. . . . . . . 8
wff 𝑡 = (𝑢 ↾ (1...𝑛)) |
22 | 5 | cv 1538 |
. . . . . . . . . 10
class 𝑝 |
23 | 18, 22 | cfv 6418 |
. . . . . . . . 9
class (𝑝‘𝑢) |
24 | | cc0 10802 |
. . . . . . . . 9
class
0 |
25 | 23, 24 | wceq 1539 |
. . . . . . . 8
wff (𝑝‘𝑢) = 0 |
26 | 21, 25 | wa 395 |
. . . . . . 7
wff (𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0) |
27 | | cmap 8573 |
. . . . . . . 8
class
↑m |
28 | 3, 12, 27 | co 7255 |
. . . . . . 7
class
(ℕ0 ↑m (1...𝑘)) |
29 | 26, 17, 28 | wrex 3064 |
. . . . . 6
wff
∃𝑢 ∈
(ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0) |
30 | 29, 15 | cab 2715 |
. . . . 5
class {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)} |
31 | 4, 5, 8, 14, 30 | cmpo 7257 |
. . . 4
class (𝑘 ∈
(ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)}) |
32 | 31 | crn 5581 |
. . 3
class ran
(𝑘 ∈
(ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)}) |
33 | 2, 3, 32 | cmpt 5153 |
. 2
class (𝑛 ∈ ℕ0
↦ ran (𝑘 ∈
(ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) |
34 | 1, 33 | wceq 1539 |
1
wff Dioph =
(𝑛 ∈
ℕ0 ↦ ran (𝑘 ∈ (ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) |