Detailed syntax breakdown of Definition df-dioph
| Step | Hyp | Ref
| Expression |
| 1 | | cdioph 42766 |
. 2
class
Dioph |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | cn0 12526 |
. . 3
class
ℕ0 |
| 4 | | vk |
. . . . 5
setvar 𝑘 |
| 5 | | vp |
. . . . 5
setvar 𝑝 |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑛 |
| 7 | | cuz 12878 |
. . . . . 6
class
ℤ≥ |
| 8 | 6, 7 | cfv 6561 |
. . . . 5
class
(ℤ≥‘𝑛) |
| 9 | | c1 11156 |
. . . . . . 7
class
1 |
| 10 | 4 | cv 1539 |
. . . . . . 7
class 𝑘 |
| 11 | | cfz 13547 |
. . . . . . 7
class
... |
| 12 | 9, 10, 11 | co 7431 |
. . . . . 6
class
(1...𝑘) |
| 13 | | cmzp 42733 |
. . . . . 6
class
mzPoly |
| 14 | 12, 13 | cfv 6561 |
. . . . 5
class
(mzPoly‘(1...𝑘)) |
| 15 | | vt |
. . . . . . . . . 10
setvar 𝑡 |
| 16 | 15 | cv 1539 |
. . . . . . . . 9
class 𝑡 |
| 17 | | vu |
. . . . . . . . . . 11
setvar 𝑢 |
| 18 | 17 | cv 1539 |
. . . . . . . . . 10
class 𝑢 |
| 19 | 9, 6, 11 | co 7431 |
. . . . . . . . . 10
class
(1...𝑛) |
| 20 | 18, 19 | cres 5687 |
. . . . . . . . 9
class (𝑢 ↾ (1...𝑛)) |
| 21 | 16, 20 | wceq 1540 |
. . . . . . . 8
wff 𝑡 = (𝑢 ↾ (1...𝑛)) |
| 22 | 5 | cv 1539 |
. . . . . . . . . 10
class 𝑝 |
| 23 | 18, 22 | cfv 6561 |
. . . . . . . . 9
class (𝑝‘𝑢) |
| 24 | | cc0 11155 |
. . . . . . . . 9
class
0 |
| 25 | 23, 24 | wceq 1540 |
. . . . . . . 8
wff (𝑝‘𝑢) = 0 |
| 26 | 21, 25 | wa 395 |
. . . . . . 7
wff (𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0) |
| 27 | | cmap 8866 |
. . . . . . . 8
class
↑m |
| 28 | 3, 12, 27 | co 7431 |
. . . . . . 7
class
(ℕ0 ↑m (1...𝑘)) |
| 29 | 26, 17, 28 | wrex 3070 |
. . . . . 6
wff
∃𝑢 ∈
(ℕ0 ↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0) |
| 30 | 29, 15 | cab 2714 |
. . . . 5
class {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)} |
| 31 | 4, 5, 8, 14, 30 | cmpo 7433 |
. . . 4
class (𝑘 ∈
(ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)}) |
| 32 | 31 | crn 5686 |
. . 3
class ran
(𝑘 ∈
(ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)}) |
| 33 | 2, 3, 32 | cmpt 5225 |
. 2
class (𝑛 ∈ ℕ0
↦ ran (𝑘 ∈
(ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) |
| 34 | 1, 33 | wceq 1540 |
1
wff Dioph =
(𝑛 ∈
ℕ0 ↦ ran (𝑘 ∈ (ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) |