Home | Metamath
Proof Explorer Theorem List (p. 418 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | spALT 41701 | sp 2178 can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023.) (Proof modification is discouraged.) Use sp 2178 instead. (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | elnelneqd 41702 | Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
Theorem | elnelneq2d 41703 | Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
Theorem | rr-spce 41704* | Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | rexlimdvaacbv 41705* | Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3213. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimddvcbvw 41706* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41705. The equivalent of this theorem without the bound variable change is rexlimddv 3219. Version of rexlimddvcbv 41707 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by Gino Giotto, 2-Apr-2024.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | rexlimddvcbv 41707* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41705. The equivalent of this theorem without the bound variable change is rexlimddv 3219. Usage of this theorem is discouraged because it depends on ax-13 2372, see rexlimddvcbvw 41706 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | rr-elrnmpt3d 41708* | Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | ||
Theorem | finnzfsuppd 41709* | If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | rr-phpd 41710 | Equivalent of php 8897 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | suceqd 41711 | Deduction associated with suceq 6316. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → suc 𝐴 = suc 𝐵) | ||
Theorem | tfindsd 41712* | Deduction associated with tfinds 7681. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = suc 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑦 ∈ On ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝜃) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ On) ⇒ ⊢ (𝜑 → 𝜂) | ||
Syntax | cmnring 41713 | Extend class notation with the monoid ring function. |
class MndRing | ||
Definition | df-mnring 41714* | Define the monoid ring function. This takes a monoid 𝑀 and a ring 𝑅 and produces a free left module over 𝑅 with a product extending the monoid function on 𝑀. (Contributed by Rohan Ridenour, 13-May-2024.) |
⊢ MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) | ||
Theorem | mnringvald 41715* | Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 )))))〉)) | ||
Theorem | mnringnmulrd 41716 | Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
Theorem | mnringnmulrdOLD 41717 | Obsolete version of mnringnmulrd 41716 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
Theorem | mnringbased 41718 | The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
Theorem | mnringbasedOLD 41719 | Obsolete version of mnringnmulrd 41716 as of 1-Nov-2024. The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
Theorem | mnringbaserd 41720 | The base set of a monoid ring. Converse of mnringbased 41718. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) | ||
Theorem | mnringelbased 41721 | Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp 0 ))) | ||
Theorem | mnringbasefd 41722 | Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) | ||
Theorem | mnringbasefsuppd 41723 | Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 finSupp 0 ) | ||
Theorem | mnringaddgd 41724 | The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
Theorem | mnringaddgdOLD 41725 | Obsolete version of mnringaddgd 41724 as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
Theorem | mnring0gd 41726 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (0g‘𝑉) = (0g‘𝐹)) | ||
Theorem | mnring0g2d 41727 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘𝐹)) | ||
Theorem | mnringmulrd 41728* | The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 ))))) = (.r‘𝐹)) | ||
Theorem | mnringscad 41729 | The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
Theorem | mnringscadOLD 41730 | Obsolete version of mnringscad 41729 as of 1-Nov-2024. The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
Theorem | mnringvscad 41731 | The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
Theorem | mnringvscadOLD 41732 | Obsolete version of mnringvscad 41731 as of 1-Nov-2024. The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
Theorem | mnringlmodd 41733 | Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹 ∈ LMod) | ||
Theorem | mnringmulrvald 41734* | Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∙ = (.r‘𝑅) & ⊢ 𝟎 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) | ||
Theorem | mnringmulrcld 41735 | Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | gru0eld 41736 | A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → ∅ ∈ 𝐺) | ||
Theorem | grusucd 41737 | Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → suc 𝐴 ∈ 𝐺) | ||
Theorem | r1rankcld 41738 | Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) | ||
Theorem | grur1cld 41739 | Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝑅1‘𝐴) ∈ 𝐺) | ||
Theorem | grurankcld 41740 | Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) | ||
Theorem | grurankrcld 41741 | If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐺) | ||
Syntax | cscott 41742 | Extend class notation with the Scott's trick operation. |
class Scott 𝐴 | ||
Definition | df-scott 41743* | Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | ||
Theorem | scotteqd 41744 | Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) | ||
Theorem | scotteq 41745 | Closed form of scotteqd 41744. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵) | ||
Theorem | nfscott 41746 | Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥Scott 𝐴 | ||
Theorem | scottabf 41747* | Value of the Scott operation at a class abstraction. Variant of scottab 41748 with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottab 41748* | Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottabes 41749* | Value of the Scott operation at a class abstraction. Variant of scottab 41748 using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottss 41750 | Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Scott 𝐴 ⊆ 𝐴 | ||
Theorem | elscottab 41751* | An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) | ||
Theorem | scottex2 41752 | scottex 9574 expressed using Scott. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ Scott 𝐴 ∈ V | ||
Theorem | scotteld 41753* | The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) | ||
Theorem | scottelrankd 41754 | Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) & ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) | ||
Theorem | scottrankd 41755 | Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) | ||
Theorem | gruscottcld 41756 | If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐵 ∈ 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → Scott 𝐴 ∈ 𝐺) | ||
Syntax | ccoll 41757 | Extend class notation with the collection operation. |
class (𝐹 Coll 𝐴) | ||
Definition | df-coll 41758* | Define the collection operation. This is similar to the image set operation “, but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | ||
Theorem | dfcoll2 41759* | Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} | ||
Theorem | colleq12d 41760 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) | ||
Theorem | colleq1 41761 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴)) | ||
Theorem | colleq2 41762 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐴 = 𝐵 → (𝐹 Coll 𝐴) = (𝐹 Coll 𝐵)) | ||
Theorem | nfcoll 41763 | Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) | ||
Theorem | collexd 41764 | The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ V) | ||
Theorem | cpcolld 41765* | Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
Theorem | cpcoll2d 41766* | cpcolld 41765 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
Theorem | grucollcld 41767 | A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) | ||
Theorem | ismnu 41768* |
The hypothesis of this theorem defines a class M of sets that we
temporarily call "minimal universes", and which will turn out
in
grumnueq 41794 to be exactly Grothendicek universes.
Minimal universes are
sets which satisfy the predicate on 𝑦 in rr-groth 41806, except for the
𝑥
∈ 𝑦 clause.
A minimal universe is closed under subsets (mnussd 41770), powersets (mnupwd 41774), and an operation which is similar to a combination of collection and union (mnuop3d 41778), from which closure under pairing (mnuprd 41783), unions (mnuunid 41784), and function ranges (mnurnd 41790) can be deduced, from which equivalence with Grothendieck universes (grumnueq 41794) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) | ||
Theorem | mnuop123d 41769* | Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝒫 𝐴 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | mnussd 41770* | Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | mnuss2d 41771* | mnussd 41770 with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝐴 ⊆ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑈) | ||
Theorem | mnu0eld 41772* | A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑈) | ||
Theorem | mnuop23d 41773* | Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | ||
Theorem | mnupwd 41774* | Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) | ||
Theorem | mnusnd 41775* | Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴} ∈ 𝑈) | ||
Theorem | mnuprssd 41776* | A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuprss2d 41777* | Special case of mnuprssd 41776. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuop3d 41778* | Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | ||
Theorem | mnuprdlem1 41779* | Lemma for mnuprd 41783. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑤) | ||
Theorem | mnuprdlem2 41780* | Lemma for mnuprd 41783. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑤) | ||
Theorem | mnuprdlem3 41781* | Lemma for mnuprd 41783. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ Ⅎ𝑖𝜑 ⇒ ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) | ||
Theorem | mnuprdlem4 41782* | Lemma for mnuprd 41783. General case. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuprd 41783* | Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuunid 41784* | Minimal universes are closed under union. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) | ||
Theorem | mnuund 41785* | Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) | ||
Theorem | mnutrcld 41786* | Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | mnutrd 41787* | Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) ⇒ ⊢ (𝜑 → Tr 𝑈) | ||
Theorem | mnurndlem1 41788* | Lemma for mnurnd 41790. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝑈) & ⊢ 𝐴 ∈ V & ⊢ (𝜑 → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝑤) | ||
Theorem | mnurndlem2 41789* | Lemma for mnurnd 41790. Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) | ||
Theorem | mnurnd 41790* | Minimal universes contain ranges of functions from an element of the universe to the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑈) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ 𝑈) | ||
Theorem | mnugrud 41791* | Minimal universes are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) ⇒ ⊢ (𝜑 → 𝑈 ∈ Univ) | ||
Theorem | grumnudlem 41792* | Lemma for grumnud 41793. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ 𝐹 = ({〈𝑏, 𝑐〉 ∣ ∃𝑑(∪ 𝑑 = 𝑐 ∧ 𝑑 ∈ 𝑓 ∧ 𝑏 ∈ 𝑑)} ∩ (𝐺 × 𝐺)) & ⊢ ((𝑖 ∈ 𝐺 ∧ ℎ ∈ 𝐺) → (𝑖𝐹ℎ ↔ ∃𝑗(∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗))) & ⊢ ((ℎ ∈ (𝐹 Coll 𝑧) ∧ (∪ 𝑗 = ℎ ∧ 𝑗 ∈ 𝑓 ∧ 𝑖 ∈ 𝑗)) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ∈ (𝐹 Coll 𝑧))) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
Theorem | grumnud 41793* | Grothendieck universes are minimal universes. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝐺 ∈ Univ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
Theorem | grumnueq 41794* | The class of Grothendieck universes is equal to the class of minimal universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ Univ = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | ||
Theorem | expandan 41795 | Expand conjunction to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜃)) | ||
Theorem | expandexn 41796 | Expand an existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥𝜓) | ||
Theorem | expandral 41797 | Expand a restricted universal quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | expandrexn 41798 | Expand a restricted existential quantifier to primitives while contracting a double negation. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | expandrex 41799 | Expand a restricted existential quantifier to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝜓)) | ||
Theorem | expanduniss 41800* | Expand ∪ 𝐴 ⊆ 𝐵 to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |