Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2b Structured version   Visualization version   GIF version

Theorem eldioph2b 42744
Description: While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 42753 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2b (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Distinct variable groups:   𝐴,𝑝   𝑢,𝑁,𝑡,𝑝   𝑢,𝑆,𝑡,𝑝
Allowed substitution hints:   𝐴(𝑢,𝑡)

Proof of Theorem eldioph2b
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophb 42738 . . 3 (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑎 ∈ (ℤ𝑁)∃𝑏 ∈ (mzPoly‘(1...𝑎))𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)}))
2 simp-5r 785 . . . . . . . . 9 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑆 ∈ V)
3 simprr 772 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → 𝑏 ∈ (mzPoly‘(1...𝑎)))
43ad2antrr 726 . . . . . . . . 9 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘(1...𝑎)))
5 simprl 770 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐:(1...𝑎)–1-1𝑆)
6 f1f 6738 . . . . . . . . . 10 (𝑐:(1...𝑎)–1-1𝑆𝑐:(1...𝑎)⟶𝑆)
75, 6syl 17 . . . . . . . . 9 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐:(1...𝑎)⟶𝑆)
8 mzprename 42730 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)) ∧ 𝑐:(1...𝑎)⟶𝑆) → (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) ∈ (mzPoly‘𝑆))
92, 4, 7, 8syl3anc 1373 . . . . . . . 8 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) ∈ (mzPoly‘𝑆))
10 simprr 772 . . . . . . . . 9 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
11 diophrw 42740 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)})
1211eqcomd 2735 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)})
132, 5, 10, 12syl3anc 1373 . . . . . . . 8 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)})
14 fveq1 6839 . . . . . . . . . . . . 13 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → (𝑝𝑢) = ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢))
1514eqeq1d 2731 . . . . . . . . . . . 12 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → ((𝑝𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0))
1615anbi2d 630 . . . . . . . . . . 11 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)))
1716rexbidv 3157 . . . . . . . . . 10 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → (∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)))
1817abbidv 2795 . . . . . . . . 9 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)})
1918rspceeqv 3608 . . . . . . . 8 (((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) ∈ (mzPoly‘𝑆) ∧ {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)}) → ∃𝑝 ∈ (mzPoly‘𝑆){𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
209, 13, 19syl2anc 584 . . . . . . 7 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ∃𝑝 ∈ (mzPoly‘𝑆){𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
21 simplll 774 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → 𝑁 ∈ ℕ0)
22 simplrl 776 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → ¬ 𝑆 ∈ Fin)
23 simplrr 777 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → (1...𝑁) ⊆ 𝑆)
24 simprl 770 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → 𝑎 ∈ (ℤ𝑁))
25 eldioph2lem2 42742 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝑎 ∈ (ℤ𝑁))) → ∃𝑐(𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
2621, 22, 23, 24, 25syl22anc 838 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → ∃𝑐(𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
27 rexv 3472 . . . . . . . 8 (∃𝑐 ∈ V (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ∃𝑐(𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
2826, 27sylibr 234 . . . . . . 7 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → ∃𝑐 ∈ V (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
2920, 28r19.29a 3141 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → ∃𝑝 ∈ (mzPoly‘𝑆){𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
30 eqeq1 2733 . . . . . . 7 (𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} → (𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
3130rexbidv 3157 . . . . . 6 (𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} → (∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ ∃𝑝 ∈ (mzPoly‘𝑆){𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
3229, 31syl5ibrcom 247 . . . . 5 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → (𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} → ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
3332rexlimdvva 3192 . . . 4 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (∃𝑎 ∈ (ℤ𝑁)∃𝑏 ∈ (mzPoly‘(1...𝑎))𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} → ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
3433adantld 490 . . 3 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → ((𝑁 ∈ ℕ0 ∧ ∃𝑎 ∈ (ℤ𝑁)∃𝑏 ∈ (mzPoly‘(1...𝑎))𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)}) → ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
351, 34biimtrid 242 . 2 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) → ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
36 simpr 484 . . . 4 (((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) ∧ 𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → 𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
37 simplll 774 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → 𝑁 ∈ ℕ0)
38 simpllr 775 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → 𝑆 ∈ V)
39 simplrr 777 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → (1...𝑁) ⊆ 𝑆)
40 simpr 484 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → 𝑝 ∈ (mzPoly‘𝑆))
41 eldioph2 42743 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ (Dioph‘𝑁))
4237, 38, 39, 40, 41syl121anc 1377 . . . . 5 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ (Dioph‘𝑁))
4342adantr 480 . . . 4 (((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) ∧ 𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ (Dioph‘𝑁))
4436, 43eqeltrd 2828 . . 3 (((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) ∧ 𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → 𝐴 ∈ (Dioph‘𝑁))
4544rexlimdva2 3136 . 2 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝐴 ∈ (Dioph‘𝑁)))
4635, 45impbid 212 1 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  Vcvv 3444  wss 3911  cmpt 5183   I cid 5525  cres 5633  ccom 5635  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  0cc0 11044  1c1 11045  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  mzPolycmzp 42703  Diophcdioph 42736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272  df-mzpcl 42704  df-mzp 42705  df-dioph 42737
This theorem is referenced by:  eldioph3b  42746  diophin  42753  diophun  42754  eldioph4b  42792
  Copyright terms: Public domain W3C validator