Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2b Structured version   Visualization version   GIF version

Theorem eldioph2b 42758
Description: While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 42767 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2b (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Distinct variable groups:   𝐴,𝑝   𝑢,𝑁,𝑡,𝑝   𝑢,𝑆,𝑡,𝑝
Allowed substitution hints:   𝐴(𝑢,𝑡)

Proof of Theorem eldioph2b
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophb 42752 . . 3 (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑎 ∈ (ℤ𝑁)∃𝑏 ∈ (mzPoly‘(1...𝑎))𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)}))
2 simp-5r 785 . . . . . . . . 9 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑆 ∈ V)
3 simprr 772 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → 𝑏 ∈ (mzPoly‘(1...𝑎)))
43ad2antrr 726 . . . . . . . . 9 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘(1...𝑎)))
5 simprl 770 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐:(1...𝑎)–1-1𝑆)
6 f1f 6759 . . . . . . . . . 10 (𝑐:(1...𝑎)–1-1𝑆𝑐:(1...𝑎)⟶𝑆)
75, 6syl 17 . . . . . . . . 9 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐:(1...𝑎)⟶𝑆)
8 mzprename 42744 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)) ∧ 𝑐:(1...𝑎)⟶𝑆) → (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) ∈ (mzPoly‘𝑆))
92, 4, 7, 8syl3anc 1373 . . . . . . . 8 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) ∈ (mzPoly‘𝑆))
10 simprr 772 . . . . . . . . 9 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
11 diophrw 42754 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)})
1211eqcomd 2736 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)})
132, 5, 10, 12syl3anc 1373 . . . . . . . 8 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)})
14 fveq1 6860 . . . . . . . . . . . . 13 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → (𝑝𝑢) = ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢))
1514eqeq1d 2732 . . . . . . . . . . . 12 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → ((𝑝𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0))
1615anbi2d 630 . . . . . . . . . . 11 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)))
1716rexbidv 3158 . . . . . . . . . 10 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → (∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)))
1817abbidv 2796 . . . . . . . . 9 (𝑝 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)})
1918rspceeqv 3614 . . . . . . . 8 (((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐))) ∈ (mzPoly‘𝑆) ∧ {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑐)))‘𝑢) = 0)}) → ∃𝑝 ∈ (mzPoly‘𝑆){𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
209, 13, 19syl2anc 584 . . . . . . 7 ((((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ∃𝑝 ∈ (mzPoly‘𝑆){𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
21 simplll 774 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → 𝑁 ∈ ℕ0)
22 simplrl 776 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → ¬ 𝑆 ∈ Fin)
23 simplrr 777 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → (1...𝑁) ⊆ 𝑆)
24 simprl 770 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → 𝑎 ∈ (ℤ𝑁))
25 eldioph2lem2 42756 . . . . . . . . 9 (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝑎 ∈ (ℤ𝑁))) → ∃𝑐(𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
2621, 22, 23, 24, 25syl22anc 838 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → ∃𝑐(𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
27 rexv 3478 . . . . . . . 8 (∃𝑐 ∈ V (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ∃𝑐(𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
2826, 27sylibr 234 . . . . . . 7 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → ∃𝑐 ∈ V (𝑐:(1...𝑎)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
2920, 28r19.29a 3142 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → ∃𝑝 ∈ (mzPoly‘𝑆){𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
30 eqeq1 2734 . . . . . . 7 (𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} → (𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
3130rexbidv 3158 . . . . . 6 (𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} → (∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ ∃𝑝 ∈ (mzPoly‘𝑆){𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
3229, 31syl5ibrcom 247 . . . . 5 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ (ℤ𝑁) ∧ 𝑏 ∈ (mzPoly‘(1...𝑎)))) → (𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} → ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
3332rexlimdvva 3195 . . . 4 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (∃𝑎 ∈ (ℤ𝑁)∃𝑏 ∈ (mzPoly‘(1...𝑎))𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)} → ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
3433adantld 490 . . 3 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → ((𝑁 ∈ ℕ0 ∧ ∃𝑎 ∈ (ℤ𝑁)∃𝑏 ∈ (mzPoly‘(1...𝑎))𝐴 = {𝑡 ∣ ∃𝑑 ∈ (ℕ0m (1...𝑎))(𝑡 = (𝑑 ↾ (1...𝑁)) ∧ (𝑏𝑑) = 0)}) → ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
351, 34biimtrid 242 . 2 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) → ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
36 simpr 484 . . . 4 (((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) ∧ 𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → 𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
37 simplll 774 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → 𝑁 ∈ ℕ0)
38 simpllr 775 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → 𝑆 ∈ V)
39 simplrr 777 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → (1...𝑁) ⊆ 𝑆)
40 simpr 484 . . . . . 6 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → 𝑝 ∈ (mzPoly‘𝑆))
41 eldioph2 42757 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ (Dioph‘𝑁))
4237, 38, 39, 40, 41syl121anc 1377 . . . . 5 ((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ (Dioph‘𝑁))
4342adantr 480 . . . 4 (((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) ∧ 𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ (Dioph‘𝑁))
4436, 43eqeltrd 2829 . . 3 (((((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) ∧ 𝑝 ∈ (mzPoly‘𝑆)) ∧ 𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) → 𝐴 ∈ (Dioph‘𝑁))
4544rexlimdva2 3137 . 2 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝐴 ∈ (Dioph‘𝑁)))
4635, 45impbid 212 1 (((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  wss 3917  cmpt 5191   I cid 5535  cres 5643  ccom 5645  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  0cc0 11075  1c1 11076  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  mzPolycmzp 42717  Diophcdioph 42750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-mzpcl 42718  df-mzp 42719  df-dioph 42751
This theorem is referenced by:  eldioph3b  42760  diophin  42767  diophun  42768  eldioph4b  42806
  Copyright terms: Public domain W3C validator