Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2b Structured version   Visualization version   GIF version

Theorem eldioph2b 42079
Description: While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 βˆ– (1...𝑁)). For instance, in diophin 42088 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2b (((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) β†’ (𝐴 ∈ (Diophβ€˜π‘) ↔ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†)𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
Distinct variable groups:   𝐴,𝑝   𝑒,𝑁,𝑑,𝑝   𝑒,𝑆,𝑑,𝑝
Allowed substitution hints:   𝐴(𝑒,𝑑)

Proof of Theorem eldioph2b
Dummy variables π‘Ž 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophb 42073 . . 3 (𝐴 ∈ (Diophβ€˜π‘) ↔ (𝑁 ∈ β„•0 ∧ βˆƒπ‘Ž ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘Ž))𝐴 = {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)}))
2 simp-5r 783 . . . . . . . . 9 ((((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))) β†’ 𝑆 ∈ V)
3 simprr 770 . . . . . . . . . 10 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))
43ad2antrr 723 . . . . . . . . 9 ((((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))) β†’ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))
5 simprl 768 . . . . . . . . . 10 ((((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))) β†’ 𝑐:(1...π‘Ž)–1-1→𝑆)
6 f1f 6781 . . . . . . . . . 10 (𝑐:(1...π‘Ž)–1-1→𝑆 β†’ 𝑐:(1...π‘Ž)βŸΆπ‘†)
75, 6syl 17 . . . . . . . . 9 ((((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))) β†’ 𝑐:(1...π‘Ž)βŸΆπ‘†)
8 mzprename 42065 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)) ∧ 𝑐:(1...π‘Ž)βŸΆπ‘†) β†’ (𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐))) ∈ (mzPolyβ€˜π‘†))
92, 4, 7, 8syl3anc 1368 . . . . . . . 8 ((((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))) β†’ (𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐))) ∈ (mzPolyβ€˜π‘†))
10 simprr 770 . . . . . . . . 9 ((((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))) β†’ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))
11 diophrw 42075 . . . . . . . . . 10 ((𝑆 ∈ V ∧ 𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁))) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’) = 0)} = {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)})
1211eqcomd 2732 . . . . . . . . 9 ((𝑆 ∈ V ∧ 𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁))) β†’ {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’) = 0)})
132, 5, 10, 12syl3anc 1368 . . . . . . . 8 ((((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))) β†’ {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’) = 0)})
14 fveq1 6884 . . . . . . . . . . . . 13 (𝑝 = (𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐))) β†’ (π‘β€˜π‘’) = ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’))
1514eqeq1d 2728 . . . . . . . . . . . 12 (𝑝 = (𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐))) β†’ ((π‘β€˜π‘’) = 0 ↔ ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’) = 0))
1615anbi2d 628 . . . . . . . . . . 11 (𝑝 = (𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐))) β†’ ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) ↔ (𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’) = 0)))
1716rexbidv 3172 . . . . . . . . . 10 (𝑝 = (𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐))) β†’ (βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) ↔ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’) = 0)))
1817abbidv 2795 . . . . . . . . 9 (𝑝 = (𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐))) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’) = 0)})
1918rspceeqv 3628 . . . . . . . 8 (((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐))) ∈ (mzPolyβ€˜π‘†) ∧ {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ ((𝑒 ∈ (β„€ ↑m 𝑆) ↦ (π‘β€˜(𝑒 ∘ 𝑐)))β€˜π‘’) = 0)}) β†’ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†){𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
209, 13, 19syl2anc 583 . . . . . . 7 ((((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) ∧ 𝑐 ∈ V) ∧ (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁)))) β†’ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†){𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
21 simplll 772 . . . . . . . . 9 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ 𝑁 ∈ β„•0)
22 simplrl 774 . . . . . . . . 9 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ Β¬ 𝑆 ∈ Fin)
23 simplrr 775 . . . . . . . . 9 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ (1...𝑁) βŠ† 𝑆)
24 simprl 768 . . . . . . . . 9 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ π‘Ž ∈ (β„€β‰₯β€˜π‘))
25 eldioph2lem2 42077 . . . . . . . . 9 (((𝑁 ∈ β„•0 ∧ Β¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) βŠ† 𝑆 ∧ π‘Ž ∈ (β„€β‰₯β€˜π‘))) β†’ βˆƒπ‘(𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁))))
2621, 22, 23, 24, 25syl22anc 836 . . . . . . . 8 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ βˆƒπ‘(𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁))))
27 rexv 3494 . . . . . . . 8 (βˆƒπ‘ ∈ V (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁))) ↔ βˆƒπ‘(𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁))))
2826, 27sylibr 233 . . . . . . 7 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ βˆƒπ‘ ∈ V (𝑐:(1...π‘Ž)–1-1→𝑆 ∧ (𝑐 β†Ύ (1...𝑁)) = ( I β†Ύ (1...𝑁))))
2920, 28r19.29a 3156 . . . . . 6 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†){𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
30 eqeq1 2730 . . . . . . 7 (𝐴 = {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} β†’ (𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ↔ {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
3130rexbidv 3172 . . . . . 6 (𝐴 = {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} β†’ (βˆƒπ‘ ∈ (mzPolyβ€˜π‘†)𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ↔ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†){𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
3229, 31syl5ibrcom 246 . . . . 5 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ (π‘Ž ∈ (β„€β‰₯β€˜π‘) ∧ 𝑏 ∈ (mzPolyβ€˜(1...π‘Ž)))) β†’ (𝐴 = {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} β†’ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†)𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
3332rexlimdvva 3205 . . . 4 (((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) β†’ (βˆƒπ‘Ž ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘Ž))𝐴 = {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)} β†’ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†)𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
3433adantld 490 . . 3 (((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) β†’ ((𝑁 ∈ β„•0 ∧ βˆƒπ‘Ž ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘Ž))𝐴 = {𝑑 ∣ βˆƒπ‘‘ ∈ (β„•0 ↑m (1...π‘Ž))(𝑑 = (𝑑 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘‘) = 0)}) β†’ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†)𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
351, 34biimtrid 241 . 2 (((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) β†’ (𝐴 ∈ (Diophβ€˜π‘) β†’ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†)𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
36 simpr 484 . . . 4 (((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) ∧ 𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) β†’ 𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
37 simplll 772 . . . . . 6 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) β†’ 𝑁 ∈ β„•0)
38 simpllr 773 . . . . . 6 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) β†’ 𝑆 ∈ V)
39 simplrr 775 . . . . . 6 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) β†’ (1...𝑁) βŠ† 𝑆)
40 simpr 484 . . . . . 6 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) β†’ 𝑝 ∈ (mzPolyβ€˜π‘†))
41 eldioph2 42078 . . . . . 6 ((𝑁 ∈ β„•0 ∧ (𝑆 ∈ V ∧ (1...𝑁) βŠ† 𝑆) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ (Diophβ€˜π‘))
4237, 38, 39, 40, 41syl121anc 1372 . . . . 5 ((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ (Diophβ€˜π‘))
4342adantr 480 . . . 4 (((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) ∧ 𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ (Diophβ€˜π‘))
4436, 43eqeltrd 2827 . . 3 (((((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) ∧ 𝑝 ∈ (mzPolyβ€˜π‘†)) ∧ 𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) β†’ 𝐴 ∈ (Diophβ€˜π‘))
4544rexlimdva2 3151 . 2 (((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) β†’ (βˆƒπ‘ ∈ (mzPolyβ€˜π‘†)𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ 𝐴 ∈ (Diophβ€˜π‘)))
4635, 45impbid 211 1 (((𝑁 ∈ β„•0 ∧ 𝑆 ∈ V) ∧ (Β¬ 𝑆 ∈ Fin ∧ (1...𝑁) βŠ† 𝑆)) β†’ (𝐴 ∈ (Diophβ€˜π‘) ↔ βˆƒπ‘ ∈ (mzPolyβ€˜π‘†)𝐴 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m 𝑆)(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2703  βˆƒwrex 3064  Vcvv 3468   βŠ† wss 3943   ↦ cmpt 5224   I cid 5566   β†Ύ cres 5671   ∘ ccom 5673  βŸΆwf 6533  β€“1-1β†’wf1 6534  β€˜cfv 6537  (class class class)co 7405   ↑m cmap 8822  Fincfn 8941  0cc0 11112  1c1 11113  β„•0cn0 12476  β„€cz 12562  β„€β‰₯cuz 12826  ...cfz 13490  mzPolycmzp 42038  Diophcdioph 42071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-mzpcl 42039  df-mzp 42040  df-dioph 42072
This theorem is referenced by:  eldioph3b  42081  diophin  42088  diophun  42089  eldioph4b  42127
  Copyright terms: Public domain W3C validator