Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophb Structured version   Visualization version   GIF version

Theorem eldiophb 40989
Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
eldiophb (𝐷 ∈ (Diophβ€˜π‘) ↔ (𝑁 ∈ β„•0 ∧ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝐷 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
Distinct variable groups:   𝐷,π‘˜,𝑝   π‘˜,𝑁,𝑝,𝑑,𝑒
Allowed substitution hints:   𝐷(𝑒,𝑑)

Proof of Theorem eldiophb
Dummy variables 𝑛 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dioph 40988 . . . 4 Dioph = (𝑛 ∈ β„•0 ↦ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘›), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)}))
21dmmptss 6191 . . 3 dom Dioph βŠ† β„•0
3 elfvdm 6876 . . 3 (𝐷 ∈ (Diophβ€˜π‘) β†’ 𝑁 ∈ dom Dioph)
42, 3sselid 3940 . 2 (𝐷 ∈ (Diophβ€˜π‘) β†’ 𝑁 ∈ β„•0)
5 fveq2 6839 . . . . . . 7 (𝑛 = 𝑁 β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘))
6 eqidd 2738 . . . . . . 7 (𝑛 = 𝑁 β†’ (mzPolyβ€˜(1...π‘˜)) = (mzPolyβ€˜(1...π‘˜)))
7 oveq2 7359 . . . . . . . . . . . 12 (𝑛 = 𝑁 β†’ (1...𝑛) = (1...𝑁))
87reseq2d 5935 . . . . . . . . . . 11 (𝑛 = 𝑁 β†’ (𝑒 β†Ύ (1...𝑛)) = (𝑒 β†Ύ (1...𝑁)))
98eqeq2d 2748 . . . . . . . . . 10 (𝑛 = 𝑁 β†’ (𝑑 = (𝑒 β†Ύ (1...𝑛)) ↔ 𝑑 = (𝑒 β†Ύ (1...𝑁))))
109anbi1d 630 . . . . . . . . 9 (𝑛 = 𝑁 β†’ ((𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0) ↔ (𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)))
1110rexbidv 3173 . . . . . . . 8 (𝑛 = 𝑁 β†’ (βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0) ↔ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)))
1211abbidv 2806 . . . . . . 7 (𝑛 = 𝑁 β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
135, 6, 12mpoeq123dv 7426 . . . . . 6 (𝑛 = 𝑁 β†’ (π‘˜ ∈ (β„€β‰₯β€˜π‘›), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)}) = (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
1413rneqd 5891 . . . . 5 (𝑛 = 𝑁 β†’ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘›), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)}) = ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
15 ovex 7384 . . . . . . 7 (β„•0 ↑m (1...𝑁)) ∈ V
1615pwex 5333 . . . . . 6 𝒫 (β„•0 ↑m (1...𝑁)) ∈ V
17 eqid 2737 . . . . . . . 8 (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) = (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
1817rnmpo 7483 . . . . . . 7 ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) = {𝑑 ∣ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}}
19 elmapi 8745 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ (β„•0 ↑m (1...π‘˜)) β†’ 𝑒:(1...π‘˜)βŸΆβ„•0)
20 fzss2 13435 . . . . . . . . . . . . . . . . 17 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (1...𝑁) βŠ† (1...π‘˜))
21 fssres 6705 . . . . . . . . . . . . . . . . 17 ((𝑒:(1...π‘˜)βŸΆβ„•0 ∧ (1...𝑁) βŠ† (1...π‘˜)) β†’ (𝑒 β†Ύ (1...𝑁)):(1...𝑁)βŸΆβ„•0)
2219, 20, 21syl2anr 597 . . . . . . . . . . . . . . . 16 ((π‘˜ ∈ (β„€β‰₯β€˜π‘) ∧ 𝑒 ∈ (β„•0 ↑m (1...π‘˜))) β†’ (𝑒 β†Ύ (1...𝑁)):(1...𝑁)βŸΆβ„•0)
23 nn0ex 12377 . . . . . . . . . . . . . . . . 17 β„•0 ∈ V
24 ovex 7384 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
2523, 24elmap 8767 . . . . . . . . . . . . . . . 16 ((𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)) ↔ (𝑒 β†Ύ (1...𝑁)):(1...𝑁)βŸΆβ„•0)
2622, 25sylibr 233 . . . . . . . . . . . . . . 15 ((π‘˜ ∈ (β„€β‰₯β€˜π‘) ∧ 𝑒 ∈ (β„•0 ↑m (1...π‘˜))) β†’ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)))
27 eleq1 2825 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑒 β†Ύ (1...𝑁)) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ↔ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁))))
2827adantr 481 . . . . . . . . . . . . . . 15 ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ↔ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁))))
2926, 28syl5ibrcom 246 . . . . . . . . . . . . . 14 ((π‘˜ ∈ (β„€β‰₯β€˜π‘) ∧ 𝑒 ∈ (β„•0 ↑m (1...π‘˜))) β†’ ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ 𝑑 ∈ (β„•0 ↑m (1...𝑁))))
3029rexlimdva 3150 . . . . . . . . . . . . 13 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ 𝑑 ∈ (β„•0 ↑m (1...𝑁))))
3130abssdv 4023 . . . . . . . . . . . 12 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} βŠ† (β„•0 ↑m (1...𝑁)))
3215elpw2 5300 . . . . . . . . . . . 12 ({𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ 𝒫 (β„•0 ↑m (1...𝑁)) ↔ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} βŠ† (β„•0 ↑m (1...𝑁)))
3331, 32sylibr 233 . . . . . . . . . . 11 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ 𝒫 (β„•0 ↑m (1...𝑁)))
34 eleq1 2825 . . . . . . . . . . 11 (𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ (𝑑 ∈ 𝒫 (β„•0 ↑m (1...𝑁)) ↔ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ 𝒫 (β„•0 ↑m (1...𝑁))))
3533, 34syl5ibrcom 246 . . . . . . . . . 10 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ 𝑑 ∈ 𝒫 (β„•0 ↑m (1...𝑁))))
3635rexlimdvw 3155 . . . . . . . . 9 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ 𝑑 ∈ 𝒫 (β„•0 ↑m (1...𝑁))))
3736rexlimiv 3143 . . . . . . . 8 (βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ 𝑑 ∈ 𝒫 (β„•0 ↑m (1...𝑁)))
3837abssi 4025 . . . . . . 7 {𝑑 ∣ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}} βŠ† 𝒫 (β„•0 ↑m (1...𝑁))
3918, 38eqsstri 3976 . . . . . 6 ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) βŠ† 𝒫 (β„•0 ↑m (1...𝑁))
4016, 39ssexi 5277 . . . . 5 ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) ∈ V
4114, 1, 40fvmpt 6945 . . . 4 (𝑁 ∈ β„•0 β†’ (Diophβ€˜π‘) = ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
4241eleq2d 2823 . . 3 (𝑁 ∈ β„•0 β†’ (𝐷 ∈ (Diophβ€˜π‘) ↔ 𝐷 ∈ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})))
43 ovex 7384 . . . . . 6 (β„•0 ↑m (1...π‘˜)) ∈ V
4443abrexex 7887 . . . . 5 {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))𝑑 = (𝑒 β†Ύ (1...𝑁))} ∈ V
45 simpl 483 . . . . . . 7 ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ 𝑑 = (𝑒 β†Ύ (1...𝑁)))
4645reximi 3085 . . . . . 6 (βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))𝑑 = (𝑒 β†Ύ (1...𝑁)))
4746ss2abi 4021 . . . . 5 {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} βŠ† {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))𝑑 = (𝑒 β†Ύ (1...𝑁))}
4844, 47ssexi 5277 . . . 4 {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ V
4917, 48elrnmpo 7486 . . 3 (𝐷 ∈ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) ↔ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝐷 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
5042, 49bitrdi 286 . 2 (𝑁 ∈ β„•0 β†’ (𝐷 ∈ (Diophβ€˜π‘) ↔ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝐷 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
514, 50biadanii 820 1 (𝐷 ∈ (Diophβ€˜π‘) ↔ (𝑁 ∈ β„•0 ∧ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝐷 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2714  βˆƒwrex 3071   βŠ† wss 3908  π’« cpw 4558  dom cdm 5631  ran crn 5632   β†Ύ cres 5633  βŸΆwf 6489  β€˜cfv 6493  (class class class)co 7351   ∈ cmpo 7353   ↑m cmap 8723  0cc0 11009  1c1 11010  β„•0cn0 12371  β„€β‰₯cuz 12721  ...cfz 13378  mzPolycmzp 40954  Diophcdioph 40987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-addcl 11069  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-map 8725  df-en 8842  df-dom 8843  df-sdom 8844  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-neg 11346  df-nn 12112  df-n0 12372  df-z 12458  df-uz 12722  df-fz 13379  df-dioph 40988
This theorem is referenced by:  eldioph  40990  eldioph2b  40995  eldiophelnn0  40996
  Copyright terms: Public domain W3C validator