Step | Hyp | Ref
| Expression |
1 | | df-dioph 40988 |
. . . 4
β’ Dioph =
(π β
β0 β¦ ran (π β (β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |
2 | 1 | dmmptss 6191 |
. . 3
β’ dom Dioph
β β0 |
3 | | elfvdm 6876 |
. . 3
β’ (π· β (Diophβπ) β π β dom Dioph) |
4 | 2, 3 | sselid 3940 |
. 2
β’ (π· β (Diophβπ) β π β
β0) |
5 | | fveq2 6839 |
. . . . . . 7
β’ (π = π β (β€β₯βπ) =
(β€β₯βπ)) |
6 | | eqidd 2738 |
. . . . . . 7
β’ (π = π β (mzPolyβ(1...π)) = (mzPolyβ(1...π))) |
7 | | oveq2 7359 |
. . . . . . . . . . . 12
β’ (π = π β (1...π) = (1...π)) |
8 | 7 | reseq2d 5935 |
. . . . . . . . . . 11
β’ (π = π β (π’ βΎ (1...π)) = (π’ βΎ (1...π))) |
9 | 8 | eqeq2d 2748 |
. . . . . . . . . 10
β’ (π = π β (π‘ = (π’ βΎ (1...π)) β π‘ = (π’ βΎ (1...π)))) |
10 | 9 | anbi1d 630 |
. . . . . . . . 9
β’ (π = π β ((π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β (π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0))) |
11 | 10 | rexbidv 3173 |
. . . . . . . 8
β’ (π = π β (βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0))) |
12 | 11 | abbidv 2806 |
. . . . . . 7
β’ (π = π β {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) |
13 | 5, 6, 12 | mpoeq123dv 7426 |
. . . . . 6
β’ (π = π β (π β (β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) = (π β (β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |
14 | 13 | rneqd 5891 |
. . . . 5
β’ (π = π β ran (π β (β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) = ran (π β (β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |
15 | | ovex 7384 |
. . . . . . 7
β’
(β0 βm (1...π)) β V |
16 | 15 | pwex 5333 |
. . . . . 6
β’ π«
(β0 βm (1...π)) β V |
17 | | eqid 2737 |
. . . . . . . 8
β’ (π β
(β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) = (π β (β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) |
18 | 17 | rnmpo 7483 |
. . . . . . 7
β’ ran
(π β
(β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) = {π β£ βπ β (β€β₯βπ)βπ β (mzPolyβ(1...π))π = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}} |
19 | | elmapi 8745 |
. . . . . . . . . . . . . . . . 17
β’ (π’ β (β0
βm (1...π))
β π’:(1...π)βΆβ0) |
20 | | fzss2 13435 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(β€β₯βπ) β (1...π) β (1...π)) |
21 | | fssres 6705 |
. . . . . . . . . . . . . . . . 17
β’ ((π’:(1...π)βΆβ0 β§ (1...π) β (1...π)) β (π’ βΎ (1...π)):(1...π)βΆβ0) |
22 | 19, 20, 21 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
β’ ((π β
(β€β₯βπ) β§ π’ β (β0
βm (1...π))) β (π’ βΎ (1...π)):(1...π)βΆβ0) |
23 | | nn0ex 12377 |
. . . . . . . . . . . . . . . . 17
β’
β0 β V |
24 | | ovex 7384 |
. . . . . . . . . . . . . . . . 17
β’
(1...π) β
V |
25 | 23, 24 | elmap 8767 |
. . . . . . . . . . . . . . . 16
β’ ((π’ βΎ (1...π)) β (β0
βm (1...π))
β (π’ βΎ
(1...π)):(1...π)βΆβ0) |
26 | 22, 25 | sylibr 233 |
. . . . . . . . . . . . . . 15
β’ ((π β
(β€β₯βπ) β§ π’ β (β0
βm (1...π))) β (π’ βΎ (1...π)) β (β0
βm (1...π))) |
27 | | eleq1 2825 |
. . . . . . . . . . . . . . . 16
β’ (π‘ = (π’ βΎ (1...π)) β (π‘ β (β0
βm (1...π))
β (π’ βΎ
(1...π)) β
(β0 βm (1...π)))) |
28 | 27 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β (π‘ β (β0
βm (1...π))
β (π’ βΎ
(1...π)) β
(β0 βm (1...π)))) |
29 | 26, 28 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
β’ ((π β
(β€β₯βπ) β§ π’ β (β0
βm (1...π))) β ((π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β π‘ β (β0
βm (1...π)))) |
30 | 29 | rexlimdva 3150 |
. . . . . . . . . . . . 13
β’ (π β
(β€β₯βπ) β (βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β π‘ β (β0
βm (1...π)))) |
31 | 30 | abssdv 4023 |
. . . . . . . . . . . 12
β’ (π β
(β€β₯βπ) β {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β (β0
βm (1...π))) |
32 | 15 | elpw2 5300 |
. . . . . . . . . . . 12
β’ ({π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β π« (β0
βm (1...π))
β {π‘ β£
βπ’ β
(β0 βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β (β0
βm (1...π))) |
33 | 31, 32 | sylibr 233 |
. . . . . . . . . . 11
β’ (π β
(β€β₯βπ) β {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β π« (β0
βm (1...π))) |
34 | | eleq1 2825 |
. . . . . . . . . . 11
β’ (π = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β (π β π« (β0
βm (1...π))
β {π‘ β£
βπ’ β
(β0 βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β π« (β0
βm (1...π)))) |
35 | 33, 34 | syl5ibrcom 246 |
. . . . . . . . . 10
β’ (π β
(β€β₯βπ) β (π = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β π β π« (β0
βm (1...π)))) |
36 | 35 | rexlimdvw 3155 |
. . . . . . . . 9
β’ (π β
(β€β₯βπ) β (βπ β (mzPolyβ(1...π))π = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β π β π« (β0
βm (1...π)))) |
37 | 36 | rexlimiv 3143 |
. . . . . . . 8
β’
(βπ β
(β€β₯βπ)βπ β (mzPolyβ(1...π))π = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β π β π« (β0
βm (1...π))) |
38 | 37 | abssi 4025 |
. . . . . . 7
β’ {π β£ βπ β
(β€β₯βπ)βπ β (mzPolyβ(1...π))π = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}} β π«
(β0 βm (1...π)) |
39 | 18, 38 | eqsstri 3976 |
. . . . . 6
β’ ran
(π β
(β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) β π«
(β0 βm (1...π)) |
40 | 16, 39 | ssexi 5277 |
. . . . 5
β’ ran
(π β
(β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) β V |
41 | 14, 1, 40 | fvmpt 6945 |
. . . 4
β’ (π β β0
β (Diophβπ) =
ran (π β
(β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |
42 | 41 | eleq2d 2823 |
. . 3
β’ (π β β0
β (π· β
(Diophβπ) β
π· β ran (π β
(β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}))) |
43 | | ovex 7384 |
. . . . . 6
β’
(β0 βm (1...π)) β V |
44 | 43 | abrexex 7887 |
. . . . 5
β’ {π‘ β£ βπ’ β (β0
βm (1...π))π‘ = (π’ βΎ (1...π))} β V |
45 | | simpl 483 |
. . . . . . 7
β’ ((π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β π‘ = (π’ βΎ (1...π))) |
46 | 45 | reximi 3085 |
. . . . . 6
β’
(βπ’ β
(β0 βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β βπ’ β (β0
βm (1...π))π‘ = (π’ βΎ (1...π))) |
47 | 46 | ss2abi 4021 |
. . . . 5
β’ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β {π‘ β£ βπ’ β (β0
βm (1...π))π‘ = (π’ βΎ (1...π))} |
48 | 44, 47 | ssexi 5277 |
. . . 4
β’ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β V |
49 | 17, 48 | elrnmpo 7486 |
. . 3
β’ (π· β ran (π β (β€β₯βπ), π β (mzPolyβ(1...π)) β¦ {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) β βπ β (β€β₯βπ)βπ β (mzPolyβ(1...π))π· = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)}) |
50 | 42, 49 | bitrdi 286 |
. 2
β’ (π β β0
β (π· β
(Diophβπ) β
βπ β
(β€β₯βπ)βπ β (mzPolyβ(1...π))π· = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |
51 | 4, 50 | biadanii 820 |
1
β’ (π· β (Diophβπ) β (π β β0 β§
βπ β
(β€β₯βπ)βπ β (mzPolyβ(1...π))π· = {π‘ β£ βπ’ β (β0
βm (1...π))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |