Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophb Structured version   Visualization version   GIF version

Theorem eldiophb 39614
Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
eldiophb (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Distinct variable groups:   𝐷,𝑘,𝑝   𝑘,𝑁,𝑝,𝑡,𝑢
Allowed substitution hints:   𝐷(𝑢,𝑡)

Proof of Theorem eldiophb
Dummy variables 𝑛 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dioph 39613 . . . 4 Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}))
21dmmptss 6082 . . 3 dom Dioph ⊆ ℕ0
3 elfvdm 6693 . . 3 (𝐷 ∈ (Dioph‘𝑁) → 𝑁 ∈ dom Dioph)
42, 3sseldi 3951 . 2 (𝐷 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
5 fveq2 6661 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
6 eqidd 2825 . . . . . . 7 (𝑛 = 𝑁 → (mzPoly‘(1...𝑘)) = (mzPoly‘(1...𝑘)))
7 oveq2 7157 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
87reseq2d 5840 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑢 ↾ (1...𝑛)) = (𝑢 ↾ (1...𝑁)))
98eqeq2d 2835 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑡 = (𝑢 ↾ (1...𝑛)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
109anbi1d 632 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1110rexbidv 3289 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1211abbidv 2888 . . . . . . 7 (𝑛 = 𝑁 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
135, 6, 12mpoeq123dv 7222 . . . . . 6 (𝑛 = 𝑁 → (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}) = (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1413rneqd 5795 . . . . 5 (𝑛 = 𝑁 → ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}) = ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
15 ovex 7182 . . . . . . 7 (ℕ0m (1...𝑁)) ∈ V
1615pwex 5268 . . . . . 6 𝒫 (ℕ0m (1...𝑁)) ∈ V
17 eqid 2824 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) = (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
1817rnmpo 7277 . . . . . . 7 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) = {𝑑 ∣ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}}
19 elmapi 8424 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (ℕ0m (1...𝑘)) → 𝑢:(1...𝑘)⟶ℕ0)
20 fzss2 12951 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑘))
21 fssres 6534 . . . . . . . . . . . . . . . . 17 ((𝑢:(1...𝑘)⟶ℕ0 ∧ (1...𝑁) ⊆ (1...𝑘)) → (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
2219, 20, 21syl2anr 599 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0m (1...𝑘))) → (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
23 nn0ex 11900 . . . . . . . . . . . . . . . . 17 0 ∈ V
24 ovex 7182 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
2523, 24elmap 8431 . . . . . . . . . . . . . . . 16 ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
2622, 25sylibr 237 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0m (1...𝑘))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
27 eleq1 2903 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0m (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁))))
2827adantr 484 . . . . . . . . . . . . . . 15 ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0m (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁))))
2926, 28syl5ibrcom 250 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0m (1...𝑘))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 ∈ (ℕ0m (1...𝑁))))
3029rexlimdva 3276 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑁) → (∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 ∈ (ℕ0m (1...𝑁))))
3130abssdv 4031 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑁) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ (ℕ0m (1...𝑁)))
3215elpw2 5234 . . . . . . . . . . . 12 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0m (1...𝑁)) ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ (ℕ0m (1...𝑁)))
3331, 32sylibr 237 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0m (1...𝑁)))
34 eleq1 2903 . . . . . . . . . . 11 (𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → (𝑑 ∈ 𝒫 (ℕ0m (1...𝑁)) ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0m (1...𝑁))))
3533, 34syl5ibrcom 250 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → (𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0m (1...𝑁))))
3635rexlimdvw 3282 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0m (1...𝑁))))
3736rexlimiv 3272 . . . . . . . 8 (∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0m (1...𝑁)))
3837abssi 4032 . . . . . . 7 {𝑑 ∣ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}} ⊆ 𝒫 (ℕ0m (1...𝑁))
3918, 38eqsstri 3987 . . . . . 6 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ⊆ 𝒫 (ℕ0m (1...𝑁))
4016, 39ssexi 5212 . . . . 5 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ∈ V
4114, 1, 40fvmpt 6759 . . . 4 (𝑁 ∈ ℕ0 → (Dioph‘𝑁) = ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
4241eleq2d 2901 . . 3 (𝑁 ∈ ℕ0 → (𝐷 ∈ (Dioph‘𝑁) ↔ 𝐷 ∈ ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})))
43 ovex 7182 . . . . . 6 (ℕ0m (1...𝑘)) ∈ V
4443abrexex 7658 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁))} ∈ V
45 simpl 486 . . . . . . 7 ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 = (𝑢 ↾ (1...𝑁)))
4645reximi 3237 . . . . . 6 (∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → ∃𝑢 ∈ (ℕ0m (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁)))
4746ss2abi 4029 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁))}
4844, 47ssexi 5212 . . . 4 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ V
4917, 48elrnmpo 7280 . . 3 (𝐷 ∈ ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ↔ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
5042, 49syl6bb 290 . 2 (𝑁 ∈ ℕ0 → (𝐷 ∈ (Dioph‘𝑁) ↔ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
514, 50biadanii 821 1 (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2115  {cab 2802  wrex 3134  wss 3919  𝒫 cpw 4522  dom cdm 5542  ran crn 5543  cres 5544  wf 6339  cfv 6343  (class class class)co 7149  cmpo 7151  m cmap 8402  0cc0 10535  1c1 10536  0cn0 11894  cuz 12240  ...cfz 12894  mzPolycmzp 39579  Diophcdioph 39612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-addcl 10595  ax-pre-lttri 10609  ax-pre-lttrn 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-dioph 39613
This theorem is referenced by:  eldioph  39615  eldioph2b  39620  eldiophelnn0  39621
  Copyright terms: Public domain W3C validator