Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophb Structured version   Visualization version   GIF version

Theorem eldiophb 41577
Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
eldiophb (𝐷 ∈ (Diophβ€˜π‘) ↔ (𝑁 ∈ β„•0 ∧ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝐷 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
Distinct variable groups:   𝐷,π‘˜,𝑝   π‘˜,𝑁,𝑝,𝑑,𝑒
Allowed substitution hints:   𝐷(𝑒,𝑑)

Proof of Theorem eldiophb
Dummy variables 𝑛 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dioph 41576 . . . 4 Dioph = (𝑛 ∈ β„•0 ↦ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘›), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)}))
21dmmptss 6240 . . 3 dom Dioph βŠ† β„•0
3 elfvdm 6928 . . 3 (𝐷 ∈ (Diophβ€˜π‘) β†’ 𝑁 ∈ dom Dioph)
42, 3sselid 3980 . 2 (𝐷 ∈ (Diophβ€˜π‘) β†’ 𝑁 ∈ β„•0)
5 fveq2 6891 . . . . . . 7 (𝑛 = 𝑁 β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘))
6 eqidd 2733 . . . . . . 7 (𝑛 = 𝑁 β†’ (mzPolyβ€˜(1...π‘˜)) = (mzPolyβ€˜(1...π‘˜)))
7 oveq2 7419 . . . . . . . . . . . 12 (𝑛 = 𝑁 β†’ (1...𝑛) = (1...𝑁))
87reseq2d 5981 . . . . . . . . . . 11 (𝑛 = 𝑁 β†’ (𝑒 β†Ύ (1...𝑛)) = (𝑒 β†Ύ (1...𝑁)))
98eqeq2d 2743 . . . . . . . . . 10 (𝑛 = 𝑁 β†’ (𝑑 = (𝑒 β†Ύ (1...𝑛)) ↔ 𝑑 = (𝑒 β†Ύ (1...𝑁))))
109anbi1d 630 . . . . . . . . 9 (𝑛 = 𝑁 β†’ ((𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0) ↔ (𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)))
1110rexbidv 3178 . . . . . . . 8 (𝑛 = 𝑁 β†’ (βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0) ↔ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)))
1211abbidv 2801 . . . . . . 7 (𝑛 = 𝑁 β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)} = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
135, 6, 12mpoeq123dv 7486 . . . . . 6 (𝑛 = 𝑁 β†’ (π‘˜ ∈ (β„€β‰₯β€˜π‘›), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)}) = (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
1413rneqd 5937 . . . . 5 (𝑛 = 𝑁 β†’ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘›), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑛)) ∧ (π‘β€˜π‘’) = 0)}) = ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
15 ovex 7444 . . . . . . 7 (β„•0 ↑m (1...𝑁)) ∈ V
1615pwex 5378 . . . . . 6 𝒫 (β„•0 ↑m (1...𝑁)) ∈ V
17 eqid 2732 . . . . . . . 8 (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) = (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
1817rnmpo 7544 . . . . . . 7 ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) = {𝑑 ∣ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}}
19 elmapi 8845 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ (β„•0 ↑m (1...π‘˜)) β†’ 𝑒:(1...π‘˜)βŸΆβ„•0)
20 fzss2 13543 . . . . . . . . . . . . . . . . 17 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (1...𝑁) βŠ† (1...π‘˜))
21 fssres 6757 . . . . . . . . . . . . . . . . 17 ((𝑒:(1...π‘˜)βŸΆβ„•0 ∧ (1...𝑁) βŠ† (1...π‘˜)) β†’ (𝑒 β†Ύ (1...𝑁)):(1...𝑁)βŸΆβ„•0)
2219, 20, 21syl2anr 597 . . . . . . . . . . . . . . . 16 ((π‘˜ ∈ (β„€β‰₯β€˜π‘) ∧ 𝑒 ∈ (β„•0 ↑m (1...π‘˜))) β†’ (𝑒 β†Ύ (1...𝑁)):(1...𝑁)βŸΆβ„•0)
23 nn0ex 12480 . . . . . . . . . . . . . . . . 17 β„•0 ∈ V
24 ovex 7444 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
2523, 24elmap 8867 . . . . . . . . . . . . . . . 16 ((𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)) ↔ (𝑒 β†Ύ (1...𝑁)):(1...𝑁)βŸΆβ„•0)
2622, 25sylibr 233 . . . . . . . . . . . . . . 15 ((π‘˜ ∈ (β„€β‰₯β€˜π‘) ∧ 𝑒 ∈ (β„•0 ↑m (1...π‘˜))) β†’ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)))
27 eleq1 2821 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑒 β†Ύ (1...𝑁)) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ↔ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁))))
2827adantr 481 . . . . . . . . . . . . . . 15 ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ↔ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁))))
2926, 28syl5ibrcom 246 . . . . . . . . . . . . . 14 ((π‘˜ ∈ (β„€β‰₯β€˜π‘) ∧ 𝑒 ∈ (β„•0 ↑m (1...π‘˜))) β†’ ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ 𝑑 ∈ (β„•0 ↑m (1...𝑁))))
3029rexlimdva 3155 . . . . . . . . . . . . 13 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ 𝑑 ∈ (β„•0 ↑m (1...𝑁))))
3130abssdv 4065 . . . . . . . . . . . 12 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} βŠ† (β„•0 ↑m (1...𝑁)))
3215elpw2 5345 . . . . . . . . . . . 12 ({𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ 𝒫 (β„•0 ↑m (1...𝑁)) ↔ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} βŠ† (β„•0 ↑m (1...𝑁)))
3331, 32sylibr 233 . . . . . . . . . . 11 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ 𝒫 (β„•0 ↑m (1...𝑁)))
34 eleq1 2821 . . . . . . . . . . 11 (𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ (𝑑 ∈ 𝒫 (β„•0 ↑m (1...𝑁)) ↔ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ 𝒫 (β„•0 ↑m (1...𝑁))))
3533, 34syl5ibrcom 246 . . . . . . . . . 10 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ 𝑑 ∈ 𝒫 (β„•0 ↑m (1...𝑁))))
3635rexlimdvw 3160 . . . . . . . . 9 (π‘˜ ∈ (β„€β‰₯β€˜π‘) β†’ (βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ 𝑑 ∈ 𝒫 (β„•0 ↑m (1...𝑁))))
3736rexlimiv 3148 . . . . . . . 8 (βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} β†’ 𝑑 ∈ 𝒫 (β„•0 ↑m (1...𝑁)))
3837abssi 4067 . . . . . . 7 {𝑑 ∣ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝑑 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}} βŠ† 𝒫 (β„•0 ↑m (1...𝑁))
3918, 38eqsstri 4016 . . . . . 6 ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) βŠ† 𝒫 (β„•0 ↑m (1...𝑁))
4016, 39ssexi 5322 . . . . 5 ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) ∈ V
4114, 1, 40fvmpt 6998 . . . 4 (𝑁 ∈ β„•0 β†’ (Diophβ€˜π‘) = ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
4241eleq2d 2819 . . 3 (𝑁 ∈ β„•0 β†’ (𝐷 ∈ (Diophβ€˜π‘) ↔ 𝐷 ∈ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})))
43 ovex 7444 . . . . . 6 (β„•0 ↑m (1...π‘˜)) ∈ V
4443abrexex 7951 . . . . 5 {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))𝑑 = (𝑒 β†Ύ (1...𝑁))} ∈ V
45 simpl 483 . . . . . . 7 ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ 𝑑 = (𝑒 β†Ύ (1...𝑁)))
4645reximi 3084 . . . . . 6 (βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))𝑑 = (𝑒 β†Ύ (1...𝑁)))
4746ss2abi 4063 . . . . 5 {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} βŠ† {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))𝑑 = (𝑒 β†Ύ (1...𝑁))}
4844, 47ssexi 5322 . . . 4 {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ∈ V
4917, 48elrnmpo 7547 . . 3 (𝐷 ∈ ran (π‘˜ ∈ (β„€β‰₯β€˜π‘), 𝑝 ∈ (mzPolyβ€˜(1...π‘˜)) ↦ {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}) ↔ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝐷 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)})
5042, 49bitrdi 286 . 2 (𝑁 ∈ β„•0 β†’ (𝐷 ∈ (Diophβ€˜π‘) ↔ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝐷 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
514, 50biadanii 820 1 (𝐷 ∈ (Diophβ€˜π‘) ↔ (𝑁 ∈ β„•0 ∧ βˆƒπ‘˜ ∈ (β„€β‰₯β€˜π‘)βˆƒπ‘ ∈ (mzPolyβ€˜(1...π‘˜))𝐷 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (1...π‘˜))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆƒwrex 3070   βŠ† wss 3948  π’« cpw 4602  dom cdm 5676  ran crn 5677   β†Ύ cres 5678  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413   ↑m cmap 8822  0cc0 11112  1c1 11113  β„•0cn0 12474  β„€β‰₯cuz 12824  ...cfz 13486  mzPolycmzp 41542  Diophcdioph 41575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-addcl 11172  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-dioph 41576
This theorem is referenced by:  eldioph  41578  eldioph2b  41583  eldiophelnn0  41584
  Copyright terms: Public domain W3C validator