Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophb Structured version   Visualization version   GIF version

Theorem eldiophb 42750
Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
eldiophb (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Distinct variable groups:   𝐷,𝑘,𝑝   𝑘,𝑁,𝑝,𝑡,𝑢
Allowed substitution hints:   𝐷(𝑢,𝑡)

Proof of Theorem eldiophb
Dummy variables 𝑛 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dioph 42749 . . . 4 Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}))
21dmmptss 6190 . . 3 dom Dioph ⊆ ℕ0
3 elfvdm 6857 . . 3 (𝐷 ∈ (Dioph‘𝑁) → 𝑁 ∈ dom Dioph)
42, 3sselid 3933 . 2 (𝐷 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
5 fveq2 6822 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
6 eqidd 2730 . . . . . . 7 (𝑛 = 𝑁 → (mzPoly‘(1...𝑘)) = (mzPoly‘(1...𝑘)))
7 oveq2 7357 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
87reseq2d 5930 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑢 ↾ (1...𝑛)) = (𝑢 ↾ (1...𝑁)))
98eqeq2d 2740 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑡 = (𝑢 ↾ (1...𝑛)) ↔ 𝑡 = (𝑢 ↾ (1...𝑁))))
109anbi1d 631 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1110rexbidv 3153 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)))
1211abbidv 2795 . . . . . . 7 (𝑛 = 𝑁 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
135, 6, 12mpoeq123dv 7424 . . . . . 6 (𝑛 = 𝑁 → (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}) = (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
1413rneqd 5880 . . . . 5 (𝑛 = 𝑁 → ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}) = ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
15 ovex 7382 . . . . . . 7 (ℕ0m (1...𝑁)) ∈ V
1615pwex 5319 . . . . . 6 𝒫 (ℕ0m (1...𝑁)) ∈ V
17 eqid 2729 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) = (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
1817rnmpo 7482 . . . . . . 7 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) = {𝑑 ∣ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}}
19 elmapi 8776 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (ℕ0m (1...𝑘)) → 𝑢:(1...𝑘)⟶ℕ0)
20 fzss2 13467 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑘))
21 fssres 6690 . . . . . . . . . . . . . . . . 17 ((𝑢:(1...𝑘)⟶ℕ0 ∧ (1...𝑁) ⊆ (1...𝑘)) → (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
2219, 20, 21syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0m (1...𝑘))) → (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
23 nn0ex 12390 . . . . . . . . . . . . . . . . 17 0 ∈ V
24 ovex 7382 . . . . . . . . . . . . . . . . 17 (1...𝑁) ∈ V
2523, 24elmap 8798 . . . . . . . . . . . . . . . 16 ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)):(1...𝑁)⟶ℕ0)
2622, 25sylibr 234 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0m (1...𝑘))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
27 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0m (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁))))
2827adantr 480 . . . . . . . . . . . . . . 15 ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0m (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁))))
2926, 28syl5ibrcom 247 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑢 ∈ (ℕ0m (1...𝑘))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 ∈ (ℕ0m (1...𝑁))))
3029rexlimdva 3130 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝑁) → (∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 ∈ (ℕ0m (1...𝑁))))
3130abssdv 4020 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑁) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ (ℕ0m (1...𝑁)))
3215elpw2 5273 . . . . . . . . . . . 12 ({𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0m (1...𝑁)) ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ (ℕ0m (1...𝑁)))
3331, 32sylibr 234 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0m (1...𝑁)))
34 eleq1 2816 . . . . . . . . . . 11 (𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → (𝑑 ∈ 𝒫 (ℕ0m (1...𝑁)) ↔ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ 𝒫 (ℕ0m (1...𝑁))))
3533, 34syl5ibrcom 247 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → (𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0m (1...𝑁))))
3635rexlimdvw 3135 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0m (1...𝑁))))
3736rexlimiv 3123 . . . . . . . 8 (∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} → 𝑑 ∈ 𝒫 (ℕ0m (1...𝑁)))
3837abssi 4021 . . . . . . 7 {𝑑 ∣ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝑑 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}} ⊆ 𝒫 (ℕ0m (1...𝑁))
3918, 38eqsstri 3982 . . . . . 6 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ⊆ 𝒫 (ℕ0m (1...𝑁))
4016, 39ssexi 5261 . . . . 5 ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ∈ V
4114, 1, 40fvmpt 6930 . . . 4 (𝑁 ∈ ℕ0 → (Dioph‘𝑁) = ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
4241eleq2d 2814 . . 3 (𝑁 ∈ ℕ0 → (𝐷 ∈ (Dioph‘𝑁) ↔ 𝐷 ∈ ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})))
43 ovex 7382 . . . . . 6 (ℕ0m (1...𝑘)) ∈ V
4443abrexex 7897 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁))} ∈ V
45 simpl 482 . . . . . . 7 ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → 𝑡 = (𝑢 ↾ (1...𝑁)))
4645reximi 3067 . . . . . 6 (∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → ∃𝑢 ∈ (ℕ0m (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁)))
4746ss2abi 4019 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ⊆ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))𝑡 = (𝑢 ↾ (1...𝑁))}
4844, 47ssexi 5261 . . . 4 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ∈ V
4917, 48elrnmpo 7485 . . 3 (𝐷 ∈ ran (𝑘 ∈ (ℤ𝑁), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}) ↔ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)})
5042, 49bitrdi 287 . 2 (𝑁 ∈ ℕ0 → (𝐷 ∈ (Dioph‘𝑁) ↔ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
514, 50biadanii 821 1 (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3903  𝒫 cpw 4551  dom cdm 5619  ran crn 5620  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  m cmap 8753  0cc0 11009  1c1 11010  0cn0 12384  cuz 12735  ...cfz 13410  mzPolycmzp 42715  Diophcdioph 42748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-addcl 11069  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-dioph 42749
This theorem is referenced by:  eldioph  42751  eldioph2b  42756  eldiophelnn0  42757
  Copyright terms: Public domain W3C validator