Detailed syntax breakdown of Definition df-dlat
| Step | Hyp | Ref
| Expression |
| 1 | | cdlat 18565 |
. 2
class
DLat |
| 2 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 4 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 6 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
| 7 | 6 | cv 1539 |
. . . . . . . . . . . 12
class 𝑧 |
| 8 | | vj |
. . . . . . . . . . . . 13
setvar 𝑗 |
| 9 | 8 | cv 1539 |
. . . . . . . . . . . 12
class 𝑗 |
| 10 | 5, 7, 9 | co 7431 |
. . . . . . . . . . 11
class (𝑦𝑗𝑧) |
| 11 | | vm |
. . . . . . . . . . . 12
setvar 𝑚 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . 11
class 𝑚 |
| 13 | 3, 10, 12 | co 7431 |
. . . . . . . . . 10
class (𝑥𝑚(𝑦𝑗𝑧)) |
| 14 | 3, 5, 12 | co 7431 |
. . . . . . . . . . 11
class (𝑥𝑚𝑦) |
| 15 | 3, 7, 12 | co 7431 |
. . . . . . . . . . 11
class (𝑥𝑚𝑧) |
| 16 | 14, 15, 9 | co 7431 |
. . . . . . . . . 10
class ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) |
| 17 | 13, 16 | wceq 1540 |
. . . . . . . . 9
wff (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) |
| 18 | | vb |
. . . . . . . . . 10
setvar 𝑏 |
| 19 | 18 | cv 1539 |
. . . . . . . . 9
class 𝑏 |
| 20 | 17, 6, 19 | wral 3061 |
. . . . . . . 8
wff
∀𝑧 ∈
𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) |
| 21 | 20, 4, 19 | wral 3061 |
. . . . . . 7
wff
∀𝑦 ∈
𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) |
| 22 | 21, 2, 19 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) |
| 23 | | vk |
. . . . . . . 8
setvar 𝑘 |
| 24 | 23 | cv 1539 |
. . . . . . 7
class 𝑘 |
| 25 | | cmee 18358 |
. . . . . . 7
class
meet |
| 26 | 24, 25 | cfv 6561 |
. . . . . 6
class
(meet‘𝑘) |
| 27 | 22, 11, 26 | wsbc 3788 |
. . . . 5
wff
[(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) |
| 28 | | cjn 18357 |
. . . . . 6
class
join |
| 29 | 24, 28 | cfv 6561 |
. . . . 5
class
(join‘𝑘) |
| 30 | 27, 8, 29 | wsbc 3788 |
. . . 4
wff
[(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) |
| 31 | | cbs 17247 |
. . . . 5
class
Base |
| 32 | 24, 31 | cfv 6561 |
. . . 4
class
(Base‘𝑘) |
| 33 | 30, 18, 32 | wsbc 3788 |
. . 3
wff
[(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) |
| 34 | | clat 18476 |
. . 3
class
Lat |
| 35 | 33, 23, 34 | crab 3436 |
. 2
class {𝑘 ∈ Lat ∣
[(Base‘𝑘) /
𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))} |
| 36 | 1, 35 | wceq 1540 |
1
wff DLat =
{𝑘 ∈ Lat ∣
[(Base‘𝑘) /
𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))} |