Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latdisd | Structured version Visualization version GIF version |
Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
latdisd.b | ⊢ 𝐵 = (Base‘𝐾) |
latdisd.j | ⊢ ∨ = (join‘𝐾) |
latdisd.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latdisd | ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latdisd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latdisd.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | latdisd.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latdisdlem 18129 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
5 | eqid 2738 | . . . . 5 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
6 | 5 | odulat 18068 | . . . 4 ⊢ (𝐾 ∈ Lat → (ODual‘𝐾) ∈ Lat) |
7 | 5, 1 | odubas 17925 | . . . . 5 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
8 | 5, 3 | odujoin 18041 | . . . . 5 ⊢ ∧ = (join‘(ODual‘𝐾)) |
9 | 5, 2 | odumeet 18043 | . . . . 5 ⊢ ∨ = (meet‘(ODual‘𝐾)) |
10 | 7, 8, 9 | latdisdlem 18129 | . . . 4 ⊢ ((ODual‘𝐾) ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
11 | 6, 10 | syl 17 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
12 | 4, 11 | impbid 211 | . 2 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
13 | oveq1 7262 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑣 ∨ 𝑤))) | |
14 | oveq1 7262 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑣) = (𝑥 ∧ 𝑣)) | |
15 | oveq1 7262 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑤) = (𝑥 ∧ 𝑤)) | |
16 | 14, 15 | oveq12d 7273 | . . . 4 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤))) |
17 | 13, 16 | eqeq12d 2754 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)))) |
18 | oveq1 7262 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑣 ∨ 𝑤) = (𝑦 ∨ 𝑤)) | |
19 | 18 | oveq2d 7271 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑤))) |
20 | oveq2 7263 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ 𝑣) = (𝑥 ∧ 𝑦)) | |
21 | 20 | oveq1d 7270 | . . . 4 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤))) |
22 | 19, 21 | eqeq12d 2754 | . . 3 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)))) |
23 | oveq2 7263 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑦 ∨ 𝑤) = (𝑦 ∨ 𝑧)) | |
24 | 23 | oveq2d 7271 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ (𝑦 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
25 | oveq2 7263 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ 𝑤) = (𝑥 ∧ 𝑧)) | |
26 | 25 | oveq2d 7271 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
27 | 24, 26 | eqeq12d 2754 | . . 3 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
28 | 17, 22, 27 | cbvral3vw 3387 | . 2 ⊢ (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
29 | 12, 28 | bitrdi 286 | 1 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ODualcodu 17920 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ple 16908 df-odu 17921 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-lat 18065 |
This theorem is referenced by: odudlatb 18158 |
Copyright terms: Public domain | W3C validator |