| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latdisd | Structured version Visualization version GIF version | ||
| Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| latdisd.b | ⊢ 𝐵 = (Base‘𝐾) |
| latdisd.j | ⊢ ∨ = (join‘𝐾) |
| latdisd.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latdisd | ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latdisd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latdisd.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | latdisd.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latdisdlem 18402 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
| 5 | eqid 2731 | . . . . 5 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
| 6 | 5 | odulat 18341 | . . . 4 ⊢ (𝐾 ∈ Lat → (ODual‘𝐾) ∈ Lat) |
| 7 | 5, 1 | odubas 18197 | . . . . 5 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
| 8 | 5, 3 | odujoin 18312 | . . . . 5 ⊢ ∧ = (join‘(ODual‘𝐾)) |
| 9 | 5, 2 | odumeet 18314 | . . . . 5 ⊢ ∨ = (meet‘(ODual‘𝐾)) |
| 10 | 7, 8, 9 | latdisdlem 18402 | . . . 4 ⊢ ((ODual‘𝐾) ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
| 11 | 6, 10 | syl 17 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
| 12 | 4, 11 | impbid 212 | . 2 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
| 13 | oveq1 7353 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑣 ∨ 𝑤))) | |
| 14 | oveq1 7353 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑣) = (𝑥 ∧ 𝑣)) | |
| 15 | oveq1 7353 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑤) = (𝑥 ∧ 𝑤)) | |
| 16 | 14, 15 | oveq12d 7364 | . . . 4 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤))) |
| 17 | 13, 16 | eqeq12d 2747 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)))) |
| 18 | oveq1 7353 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑣 ∨ 𝑤) = (𝑦 ∨ 𝑤)) | |
| 19 | 18 | oveq2d 7362 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑤))) |
| 20 | oveq2 7354 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ 𝑣) = (𝑥 ∧ 𝑦)) | |
| 21 | 20 | oveq1d 7361 | . . . 4 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤))) |
| 22 | 19, 21 | eqeq12d 2747 | . . 3 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)))) |
| 23 | oveq2 7354 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑦 ∨ 𝑤) = (𝑦 ∨ 𝑧)) | |
| 24 | 23 | oveq2d 7362 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ (𝑦 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
| 25 | oveq2 7354 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ 𝑤) = (𝑥 ∧ 𝑧)) | |
| 26 | 25 | oveq2d 7362 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
| 27 | 24, 26 | eqeq12d 2747 | . . 3 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
| 28 | 17, 22, 27 | cbvral3vw 3216 | . 2 ⊢ (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
| 29 | 12, 28 | bitrdi 287 | 1 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ODualcodu 18192 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-dec 12589 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ple 17181 df-odu 18193 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 |
| This theorem is referenced by: odudlatb 18431 |
| Copyright terms: Public domain | W3C validator |