| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latdisd | Structured version Visualization version GIF version | ||
| Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| latdisd.b | ⊢ 𝐵 = (Base‘𝐾) |
| latdisd.j | ⊢ ∨ = (join‘𝐾) |
| latdisd.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latdisd | ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latdisd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latdisd.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | latdisd.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latdisdlem 18437 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
| 5 | eqid 2729 | . . . . 5 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
| 6 | 5 | odulat 18376 | . . . 4 ⊢ (𝐾 ∈ Lat → (ODual‘𝐾) ∈ Lat) |
| 7 | 5, 1 | odubas 18232 | . . . . 5 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
| 8 | 5, 3 | odujoin 18347 | . . . . 5 ⊢ ∧ = (join‘(ODual‘𝐾)) |
| 9 | 5, 2 | odumeet 18349 | . . . . 5 ⊢ ∨ = (meet‘(ODual‘𝐾)) |
| 10 | 7, 8, 9 | latdisdlem 18437 | . . . 4 ⊢ ((ODual‘𝐾) ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
| 11 | 6, 10 | syl 17 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
| 12 | 4, 11 | impbid 212 | . 2 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
| 13 | oveq1 7376 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑣 ∨ 𝑤))) | |
| 14 | oveq1 7376 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑣) = (𝑥 ∧ 𝑣)) | |
| 15 | oveq1 7376 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑤) = (𝑥 ∧ 𝑤)) | |
| 16 | 14, 15 | oveq12d 7387 | . . . 4 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤))) |
| 17 | 13, 16 | eqeq12d 2745 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)))) |
| 18 | oveq1 7376 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑣 ∨ 𝑤) = (𝑦 ∨ 𝑤)) | |
| 19 | 18 | oveq2d 7385 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑤))) |
| 20 | oveq2 7377 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ 𝑣) = (𝑥 ∧ 𝑦)) | |
| 21 | 20 | oveq1d 7384 | . . . 4 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤))) |
| 22 | 19, 21 | eqeq12d 2745 | . . 3 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)))) |
| 23 | oveq2 7377 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑦 ∨ 𝑤) = (𝑦 ∨ 𝑧)) | |
| 24 | 23 | oveq2d 7385 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ (𝑦 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
| 25 | oveq2 7377 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ 𝑤) = (𝑥 ∧ 𝑧)) | |
| 26 | 25 | oveq2d 7385 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
| 27 | 24, 26 | eqeq12d 2745 | . . 3 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
| 28 | 17, 22, 27 | cbvral3vw 3219 | . 2 ⊢ (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
| 29 | 12, 28 | bitrdi 287 | 1 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ODualcodu 18227 joincjn 18252 meetcmee 18253 Latclat 18372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ple 17216 df-odu 18228 df-proset 18235 df-poset 18254 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-lat 18373 |
| This theorem is referenced by: odudlatb 18466 |
| Copyright terms: Public domain | W3C validator |