![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latdisd | Structured version Visualization version GIF version |
Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
latdisd.b | ⊢ 𝐵 = (Base‘𝐾) |
latdisd.j | ⊢ ∨ = (join‘𝐾) |
latdisd.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latdisd | ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latdisd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latdisd.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | latdisd.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latdisdlem 17579 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
5 | eqid 2778 | . . . . 5 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
6 | 5 | odulat 17535 | . . . 4 ⊢ (𝐾 ∈ Lat → (ODual‘𝐾) ∈ Lat) |
7 | 5, 1 | odubas 17523 | . . . . 5 ⊢ 𝐵 = (Base‘(ODual‘𝐾)) |
8 | 5, 3 | odujoin 17532 | . . . . 5 ⊢ ∧ = (join‘(ODual‘𝐾)) |
9 | 5, 2 | odumeet 17530 | . . . . 5 ⊢ ∨ = (meet‘(ODual‘𝐾)) |
10 | 7, 8, 9 | latdisdlem 17579 | . . . 4 ⊢ ((ODual‘𝐾) ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
11 | 6, 10 | syl 17 | . . 3 ⊢ (𝐾 ∈ Lat → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)))) |
12 | 4, 11 | impbid 204 | . 2 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)))) |
13 | oveq1 6931 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑣 ∨ 𝑤))) | |
14 | oveq1 6931 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑣) = (𝑥 ∧ 𝑣)) | |
15 | oveq1 6931 | . . . . 5 ⊢ (𝑢 = 𝑥 → (𝑢 ∧ 𝑤) = (𝑥 ∧ 𝑤)) | |
16 | 14, 15 | oveq12d 6942 | . . . 4 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤))) |
17 | 13, 16 | eqeq12d 2793 | . . 3 ⊢ (𝑢 = 𝑥 → ((𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)))) |
18 | oveq1 6931 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑣 ∨ 𝑤) = (𝑦 ∨ 𝑤)) | |
19 | 18 | oveq2d 6940 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ (𝑣 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑤))) |
20 | oveq2 6932 | . . . . 5 ⊢ (𝑣 = 𝑦 → (𝑥 ∧ 𝑣) = (𝑥 ∧ 𝑦)) | |
21 | 20 | oveq1d 6939 | . . . 4 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤))) |
22 | 19, 21 | eqeq12d 2793 | . . 3 ⊢ (𝑣 = 𝑦 → ((𝑥 ∧ (𝑣 ∨ 𝑤)) = ((𝑥 ∧ 𝑣) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)))) |
23 | oveq2 6932 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑦 ∨ 𝑤) = (𝑦 ∨ 𝑧)) | |
24 | 23 | oveq2d 6940 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ (𝑦 ∨ 𝑤)) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
25 | oveq2 6932 | . . . . 5 ⊢ (𝑤 = 𝑧 → (𝑥 ∧ 𝑤) = (𝑥 ∧ 𝑧)) | |
26 | 25 | oveq2d 6940 | . . . 4 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
27 | 24, 26 | eqeq12d 2793 | . . 3 ⊢ (𝑤 = 𝑧 → ((𝑥 ∧ (𝑦 ∨ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
28 | 17, 22, 27 | cbvral3v 3377 | . 2 ⊢ (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∧ (𝑣 ∨ 𝑤)) = ((𝑢 ∧ 𝑣) ∨ (𝑢 ∧ 𝑤)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
29 | 12, 28 | syl6bb 279 | 1 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∨ (𝑦 ∧ 𝑧)) = ((𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ‘cfv 6137 (class class class)co 6924 Basecbs 16259 joincjn 17334 meetcmee 17335 Latclat 17435 ODualcodu 17518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-dec 11850 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ple 16362 df-proset 17318 df-poset 17336 df-lub 17364 df-glb 17365 df-join 17366 df-meet 17367 df-lat 17436 df-odu 17519 |
This theorem is referenced by: odudlatb 17586 |
Copyright terms: Public domain | W3C validator |