Step | Hyp | Ref
| Expression |
1 | | latdisd.b |
. . . 4
β’ π΅ = (BaseβπΎ) |
2 | | latdisd.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
3 | | latdisd.m |
. . . 4
β’ β§ =
(meetβπΎ) |
4 | 1, 2, 3 | latdisdlem 18453 |
. . 3
β’ (πΎ β Lat β
(βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β¨ (π¦ β§ π§)) = ((π₯ β¨ π¦) β§ (π₯ β¨ π§)) β βπ’ β π΅ βπ£ β π΅ βπ€ β π΅ (π’ β§ (π£ β¨ π€)) = ((π’ β§ π£) β¨ (π’ β§ π€)))) |
5 | | eqid 2732 |
. . . . 5
β’
(ODualβπΎ) =
(ODualβπΎ) |
6 | 5 | odulat 18392 |
. . . 4
β’ (πΎ β Lat β
(ODualβπΎ) β
Lat) |
7 | 5, 1 | odubas 18248 |
. . . . 5
β’ π΅ =
(Baseβ(ODualβπΎ)) |
8 | 5, 3 | odujoin 18365 |
. . . . 5
β’ β§ =
(joinβ(ODualβπΎ)) |
9 | 5, 2 | odumeet 18367 |
. . . . 5
β’ β¨ =
(meetβ(ODualβπΎ)) |
10 | 7, 8, 9 | latdisdlem 18453 |
. . . 4
β’
((ODualβπΎ)
β Lat β (βπ’ β π΅ βπ£ β π΅ βπ€ β π΅ (π’ β§ (π£ β¨ π€)) = ((π’ β§ π£) β¨ (π’ β§ π€)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β¨ (π¦ β§ π§)) = ((π₯ β¨ π¦) β§ (π₯ β¨ π§)))) |
11 | 6, 10 | syl 17 |
. . 3
β’ (πΎ β Lat β
(βπ’ β π΅ βπ£ β π΅ βπ€ β π΅ (π’ β§ (π£ β¨ π€)) = ((π’ β§ π£) β¨ (π’ β§ π€)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β¨ (π¦ β§ π§)) = ((π₯ β¨ π¦) β§ (π₯ β¨ π§)))) |
12 | 4, 11 | impbid 211 |
. 2
β’ (πΎ β Lat β
(βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β¨ (π¦ β§ π§)) = ((π₯ β¨ π¦) β§ (π₯ β¨ π§)) β βπ’ β π΅ βπ£ β π΅ βπ€ β π΅ (π’ β§ (π£ β¨ π€)) = ((π’ β§ π£) β¨ (π’ β§ π€)))) |
13 | | oveq1 7418 |
. . . 4
β’ (π’ = π₯ β (π’ β§ (π£ β¨ π€)) = (π₯ β§ (π£ β¨ π€))) |
14 | | oveq1 7418 |
. . . . 5
β’ (π’ = π₯ β (π’ β§ π£) = (π₯ β§ π£)) |
15 | | oveq1 7418 |
. . . . 5
β’ (π’ = π₯ β (π’ β§ π€) = (π₯ β§ π€)) |
16 | 14, 15 | oveq12d 7429 |
. . . 4
β’ (π’ = π₯ β ((π’ β§ π£) β¨ (π’ β§ π€)) = ((π₯ β§ π£) β¨ (π₯ β§ π€))) |
17 | 13, 16 | eqeq12d 2748 |
. . 3
β’ (π’ = π₯ β ((π’ β§ (π£ β¨ π€)) = ((π’ β§ π£) β¨ (π’ β§ π€)) β (π₯ β§ (π£ β¨ π€)) = ((π₯ β§ π£) β¨ (π₯ β§ π€)))) |
18 | | oveq1 7418 |
. . . . 5
β’ (π£ = π¦ β (π£ β¨ π€) = (π¦ β¨ π€)) |
19 | 18 | oveq2d 7427 |
. . . 4
β’ (π£ = π¦ β (π₯ β§ (π£ β¨ π€)) = (π₯ β§ (π¦ β¨ π€))) |
20 | | oveq2 7419 |
. . . . 5
β’ (π£ = π¦ β (π₯ β§ π£) = (π₯ β§ π¦)) |
21 | 20 | oveq1d 7426 |
. . . 4
β’ (π£ = π¦ β ((π₯ β§ π£) β¨ (π₯ β§ π€)) = ((π₯ β§ π¦) β¨ (π₯ β§ π€))) |
22 | 19, 21 | eqeq12d 2748 |
. . 3
β’ (π£ = π¦ β ((π₯ β§ (π£ β¨ π€)) = ((π₯ β§ π£) β¨ (π₯ β§ π€)) β (π₯ β§ (π¦ β¨ π€)) = ((π₯ β§ π¦) β¨ (π₯ β§ π€)))) |
23 | | oveq2 7419 |
. . . . 5
β’ (π€ = π§ β (π¦ β¨ π€) = (π¦ β¨ π§)) |
24 | 23 | oveq2d 7427 |
. . . 4
β’ (π€ = π§ β (π₯ β§ (π¦ β¨ π€)) = (π₯ β§ (π¦ β¨ π§))) |
25 | | oveq2 7419 |
. . . . 5
β’ (π€ = π§ β (π₯ β§ π€) = (π₯ β§ π§)) |
26 | 25 | oveq2d 7427 |
. . . 4
β’ (π€ = π§ β ((π₯ β§ π¦) β¨ (π₯ β§ π€)) = ((π₯ β§ π¦) β¨ (π₯ β§ π§))) |
27 | 24, 26 | eqeq12d 2748 |
. . 3
β’ (π€ = π§ β ((π₯ β§ (π¦ β¨ π€)) = ((π₯ β§ π¦) β¨ (π₯ β§ π€)) β (π₯ β§ (π¦ β¨ π§)) = ((π₯ β§ π¦) β¨ (π₯ β§ π§)))) |
28 | 17, 22, 27 | cbvral3vw 3240 |
. 2
β’
(βπ’ β
π΅ βπ£ β π΅ βπ€ β π΅ (π’ β§ (π£ β¨ π€)) = ((π’ β§ π£) β¨ (π’ β§ π€)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β§ (π¦ β¨ π§)) = ((π₯ β§ π¦) β¨ (π₯ β§ π§))) |
29 | 12, 28 | bitrdi 286 |
1
β’ (πΎ β Lat β
(βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β¨ (π¦ β§ π§)) = ((π₯ β¨ π¦) β§ (π₯ β¨ π§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β§ (π¦ β¨ π§)) = ((π₯ β§ π¦) β¨ (π₯ β§ π§)))) |