MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdlat Structured version   Visualization version   GIF version

Theorem isdlat 18567
Description: Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b 𝐵 = (Base‘𝐾)
isdlat.j = (join‘𝐾)
isdlat.m = (meet‘𝐾)
Assertion
Ref Expression
isdlat (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdlat
Dummy variables 𝑘 𝑏 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isdlat.b . . . . 5 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2795 . . . 4 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6906 . . . . . 6 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
5 isdlat.j . . . . . 6 = (join‘𝐾)
64, 5eqtr4di 2795 . . . . 5 (𝑘 = 𝐾 → (join‘𝑘) = )
7 fveq2 6906 . . . . . . 7 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
8 isdlat.m . . . . . . 7 = (meet‘𝐾)
97, 8eqtr4di 2795 . . . . . 6 (𝑘 = 𝐾 → (meet‘𝑘) = )
109sbceq1d 3793 . . . . 5 (𝑘 = 𝐾 → ([(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
116, 10sbceqbid 3795 . . . 4 (𝑘 = 𝐾 → ([(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
123, 11sbceqbid 3795 . . 3 (𝑘 = 𝐾 → ([(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [𝐵 / 𝑏][ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
132fvexi 6920 . . . 4 𝐵 ∈ V
145fvexi 6920 . . . 4 ∈ V
158fvexi 6920 . . . 4 ∈ V
16 raleq 3323 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
1716raleqbi1dv 3338 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
1817raleqbi1dv 3338 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
19 simpr 484 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → 𝑚 = )
20 eqidd 2738 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → 𝑥 = 𝑥)
21 simpl 482 . . . . . . . . . . 11 ((𝑗 = 𝑚 = ) → 𝑗 = )
2221oveqd 7448 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑦𝑗𝑧) = (𝑦 𝑧))
2319, 20, 22oveq123d 7452 . . . . . . . . 9 ((𝑗 = 𝑚 = ) → (𝑥𝑚(𝑦𝑗𝑧)) = (𝑥 (𝑦 𝑧)))
2419oveqd 7448 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑥𝑚𝑦) = (𝑥 𝑦))
2519oveqd 7448 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑥𝑚𝑧) = (𝑥 𝑧))
2621, 24, 25oveq123d 7452 . . . . . . . . 9 ((𝑗 = 𝑚 = ) → ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
2723, 26eqeq12d 2753 . . . . . . . 8 ((𝑗 = 𝑚 = ) → ((𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
2827ralbidv 3178 . . . . . . 7 ((𝑗 = 𝑚 = ) → (∀𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
29282ralbidv 3221 . . . . . 6 ((𝑗 = 𝑚 = ) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
3018, 29sylan9bb 509 . . . . 5 ((𝑏 = 𝐵 ∧ (𝑗 = 𝑚 = )) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
31303impb 1115 . . . 4 ((𝑏 = 𝐵𝑗 = 𝑚 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
3213, 14, 15, 31sbc3ie 3868 . . 3 ([𝐵 / 𝑏][ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
3312, 32bitrdi 287 . 2 (𝑘 = 𝐾 → ([(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
34 df-dlat 18566 . 2 DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))}
3533, 34elrab2 3695 1 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  [wsbc 3788  cfv 6561  (class class class)co 7431  Basecbs 17247  joincjn 18357  meetcmee 18358  Latclat 18476  DLatcdlat 18565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-dlat 18566
This theorem is referenced by:  dlatmjdi  18568  dlatl  18569  odudlatb  18570  topdlat  48893
  Copyright terms: Public domain W3C validator