MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdlat Structured version   Visualization version   GIF version

Theorem isdlat 17795
Description: Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b 𝐵 = (Base‘𝐾)
isdlat.j = (join‘𝐾)
isdlat.m = (meet‘𝐾)
Assertion
Ref Expression
isdlat (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdlat
Dummy variables 𝑘 𝑏 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isdlat.b . . . . 5 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2851 . . . 4 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6645 . . . . . 6 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
5 isdlat.j . . . . . 6 = (join‘𝐾)
64, 5eqtr4di 2851 . . . . 5 (𝑘 = 𝐾 → (join‘𝑘) = )
7 fveq2 6645 . . . . . . 7 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
8 isdlat.m . . . . . . 7 = (meet‘𝐾)
97, 8eqtr4di 2851 . . . . . 6 (𝑘 = 𝐾 → (meet‘𝑘) = )
109sbceq1d 3725 . . . . 5 (𝑘 = 𝐾 → ([(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
116, 10sbceqbid 3727 . . . 4 (𝑘 = 𝐾 → ([(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
123, 11sbceqbid 3727 . . 3 (𝑘 = 𝐾 → ([(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [𝐵 / 𝑏][ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
132fvexi 6659 . . . 4 𝐵 ∈ V
145fvexi 6659 . . . 4 ∈ V
158fvexi 6659 . . . 4 ∈ V
16 raleq 3358 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
1716raleqbi1dv 3356 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
1817raleqbi1dv 3356 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
19 simpr 488 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → 𝑚 = )
20 eqidd 2799 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → 𝑥 = 𝑥)
21 simpl 486 . . . . . . . . . . 11 ((𝑗 = 𝑚 = ) → 𝑗 = )
2221oveqd 7152 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑦𝑗𝑧) = (𝑦 𝑧))
2319, 20, 22oveq123d 7156 . . . . . . . . 9 ((𝑗 = 𝑚 = ) → (𝑥𝑚(𝑦𝑗𝑧)) = (𝑥 (𝑦 𝑧)))
2419oveqd 7152 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑥𝑚𝑦) = (𝑥 𝑦))
2519oveqd 7152 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑥𝑚𝑧) = (𝑥 𝑧))
2621, 24, 25oveq123d 7156 . . . . . . . . 9 ((𝑗 = 𝑚 = ) → ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
2723, 26eqeq12d 2814 . . . . . . . 8 ((𝑗 = 𝑚 = ) → ((𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
2827ralbidv 3162 . . . . . . 7 ((𝑗 = 𝑚 = ) → (∀𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
29282ralbidv 3164 . . . . . 6 ((𝑗 = 𝑚 = ) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
3018, 29sylan9bb 513 . . . . 5 ((𝑏 = 𝐵 ∧ (𝑗 = 𝑚 = )) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
31303impb 1112 . . . 4 ((𝑏 = 𝐵𝑗 = 𝑚 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
3213, 14, 15, 31sbc3ie 3798 . . 3 ([𝐵 / 𝑏][ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
3312, 32syl6bb 290 . 2 (𝑘 = 𝐾 → ([(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
34 df-dlat 17794 . 2 DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))}
3533, 34elrab2 3631 1 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  [wsbc 3720  cfv 6324  (class class class)co 7135  Basecbs 16475  joincjn 17546  meetcmee 17547  Latclat 17647  DLatcdlat 17793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-dlat 17794
This theorem is referenced by:  dlatmjdi  17796  dlatl  17797  odudlatb  17798
  Copyright terms: Public domain W3C validator