Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . 5
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) |
2 | | isdlat.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
3 | 1, 2 | eqtr4di 2796 |
. . . 4
⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
4 | | fveq2 6774 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾)) |
5 | | isdlat.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
6 | 4, 5 | eqtr4di 2796 |
. . . . 5
⊢ (𝑘 = 𝐾 → (join‘𝑘) = ∨ ) |
7 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾)) |
8 | | isdlat.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
9 | 7, 8 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (meet‘𝑘) = ∧ ) |
10 | 9 | sbceq1d 3721 |
. . . . 5
⊢ (𝑘 = 𝐾 → ([(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [ ∧ / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)))) |
11 | 6, 10 | sbceqbid 3723 |
. . . 4
⊢ (𝑘 = 𝐾 → ([(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [ ∨ / 𝑗][ ∧ / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)))) |
12 | 3, 11 | sbceqbid 3723 |
. . 3
⊢ (𝑘 = 𝐾 → ([(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [𝐵 / 𝑏][ ∨ / 𝑗][ ∧ / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)))) |
13 | 2 | fvexi 6788 |
. . . 4
⊢ 𝐵 ∈ V |
14 | 5 | fvexi 6788 |
. . . 4
⊢ ∨ ∈
V |
15 | 8 | fvexi 6788 |
. . . 4
⊢ ∧ ∈
V |
16 | | raleq 3342 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑧 ∈ 𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)))) |
17 | 16 | raleqbi1dv 3340 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)))) |
18 | 17 | raleqbi1dv 3340 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)))) |
19 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑚 = ∧ ) |
20 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑥 = 𝑥) |
21 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑗 = ∨ ) |
22 | 21 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → (𝑦𝑗𝑧) = (𝑦 ∨ 𝑧)) |
23 | 19, 20, 22 | oveq123d 7296 |
. . . . . . . . 9
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → (𝑥𝑚(𝑦𝑗𝑧)) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
24 | 19 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → (𝑥𝑚𝑦) = (𝑥 ∧ 𝑦)) |
25 | 19 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → (𝑥𝑚𝑧) = (𝑥 ∧ 𝑧)) |
26 | 21, 24, 25 | oveq123d 7296 |
. . . . . . . . 9
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
27 | 23, 26 | eqeq12d 2754 |
. . . . . . . 8
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) → ((𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
28 | 27 | ralbidv 3112 |
. . . . . . 7
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) →
(∀𝑧 ∈ 𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
29 | 28 | 2ralbidv 3129 |
. . . . . 6
⊢ ((𝑗 = ∨ ∧ 𝑚 = ∧ ) →
(∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
30 | 18, 29 | sylan9bb 510 |
. . . . 5
⊢ ((𝑏 = 𝐵 ∧ (𝑗 = ∨ ∧ 𝑚 = ∧ )) →
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
31 | 30 | 3impb 1114 |
. . . 4
⊢ ((𝑏 = 𝐵 ∧ 𝑗 = ∨ ∧ 𝑚 = ∧ ) →
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
32 | 13, 14, 15, 31 | sbc3ie 3802 |
. . 3
⊢
([𝐵 / 𝑏][ ∨ / 𝑗][ ∧ / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
33 | 12, 32 | bitrdi 287 |
. 2
⊢ (𝑘 = 𝐾 → ([(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |
34 | | df-dlat 18239 |
. 2
⊢ DLat =
{𝑘 ∈ Lat ∣
[(Base‘𝑘) /
𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))} |
35 | 33, 34 | elrab2 3627 |
1
⊢ (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |