MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdlat Structured version   Visualization version   GIF version

Theorem isdlat 18488
Description: Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b 𝐵 = (Base‘𝐾)
isdlat.j = (join‘𝐾)
isdlat.m = (meet‘𝐾)
Assertion
Ref Expression
isdlat (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isdlat
Dummy variables 𝑘 𝑏 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
2 isdlat.b . . . . 5 𝐵 = (Base‘𝐾)
31, 2eqtr4di 2783 . . . 4 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
4 fveq2 6861 . . . . . 6 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
5 isdlat.j . . . . . 6 = (join‘𝐾)
64, 5eqtr4di 2783 . . . . 5 (𝑘 = 𝐾 → (join‘𝑘) = )
7 fveq2 6861 . . . . . . 7 (𝑘 = 𝐾 → (meet‘𝑘) = (meet‘𝐾))
8 isdlat.m . . . . . . 7 = (meet‘𝐾)
97, 8eqtr4di 2783 . . . . . 6 (𝑘 = 𝐾 → (meet‘𝑘) = )
109sbceq1d 3761 . . . . 5 (𝑘 = 𝐾 → ([(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
116, 10sbceqbid 3763 . . . 4 (𝑘 = 𝐾 → ([(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
123, 11sbceqbid 3763 . . 3 (𝑘 = 𝐾 → ([(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ [𝐵 / 𝑏][ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
132fvexi 6875 . . . 4 𝐵 ∈ V
145fvexi 6875 . . . 4 ∈ V
158fvexi 6875 . . . 4 ∈ V
16 raleq 3298 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
1716raleqbi1dv 3313 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
1817raleqbi1dv 3313 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))))
19 simpr 484 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → 𝑚 = )
20 eqidd 2731 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → 𝑥 = 𝑥)
21 simpl 482 . . . . . . . . . . 11 ((𝑗 = 𝑚 = ) → 𝑗 = )
2221oveqd 7407 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑦𝑗𝑧) = (𝑦 𝑧))
2319, 20, 22oveq123d 7411 . . . . . . . . 9 ((𝑗 = 𝑚 = ) → (𝑥𝑚(𝑦𝑗𝑧)) = (𝑥 (𝑦 𝑧)))
2419oveqd 7407 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑥𝑚𝑦) = (𝑥 𝑦))
2519oveqd 7407 . . . . . . . . . 10 ((𝑗 = 𝑚 = ) → (𝑥𝑚𝑧) = (𝑥 𝑧))
2621, 24, 25oveq123d 7411 . . . . . . . . 9 ((𝑗 = 𝑚 = ) → ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
2723, 26eqeq12d 2746 . . . . . . . 8 ((𝑗 = 𝑚 = ) → ((𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
2827ralbidv 3157 . . . . . . 7 ((𝑗 = 𝑚 = ) → (∀𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
29282ralbidv 3202 . . . . . 6 ((𝑗 = 𝑚 = ) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
3018, 29sylan9bb 509 . . . . 5 ((𝑏 = 𝐵 ∧ (𝑗 = 𝑚 = )) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
31303impb 1114 . . . 4 ((𝑏 = 𝐵𝑗 = 𝑚 = ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
3213, 14, 15, 31sbc3ie 3834 . . 3 ([𝐵 / 𝑏][ / 𝑗][ / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
3312, 32bitrdi 287 . 2 (𝑘 = 𝐾 → ([(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
34 df-dlat 18487 . 2 DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))}
3533, 34elrab2 3665 1 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  [wsbc 3756  cfv 6514  (class class class)co 7390  Basecbs 17186  joincjn 18279  meetcmee 18280  Latclat 18397  DLatcdlat 18486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-dlat 18487
This theorem is referenced by:  dlatmjdi  18489  dlatl  18490  odudlatb  18491  topdlat  48996
  Copyright terms: Public domain W3C validator