Detailed syntax breakdown of Definition df-dmat
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdmat 22494 | . 2
class 
DMat | 
| 2 |  | vn | . . 3
setvar 𝑛 | 
| 3 |  | vr | . . 3
setvar 𝑟 | 
| 4 |  | cfn 8985 | . . 3
class
Fin | 
| 5 |  | cvv 3480 | . . 3
class
V | 
| 6 |  | vi | . . . . . . . . 9
setvar 𝑖 | 
| 7 | 6 | cv 1539 | . . . . . . . 8
class 𝑖 | 
| 8 |  | vj | . . . . . . . . 9
setvar 𝑗 | 
| 9 | 8 | cv 1539 | . . . . . . . 8
class 𝑗 | 
| 10 | 7, 9 | wne 2940 | . . . . . . 7
wff 𝑖 ≠ 𝑗 | 
| 11 |  | vm | . . . . . . . . . 10
setvar 𝑚 | 
| 12 | 11 | cv 1539 | . . . . . . . . 9
class 𝑚 | 
| 13 | 7, 9, 12 | co 7431 | . . . . . . . 8
class (𝑖𝑚𝑗) | 
| 14 | 3 | cv 1539 | . . . . . . . . 9
class 𝑟 | 
| 15 |  | c0g 17484 | . . . . . . . . 9
class
0g | 
| 16 | 14, 15 | cfv 6561 | . . . . . . . 8
class
(0g‘𝑟) | 
| 17 | 13, 16 | wceq 1540 | . . . . . . 7
wff (𝑖𝑚𝑗) = (0g‘𝑟) | 
| 18 | 10, 17 | wi 4 | . . . . . 6
wff (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) | 
| 19 | 2 | cv 1539 | . . . . . 6
class 𝑛 | 
| 20 | 18, 8, 19 | wral 3061 | . . . . 5
wff
∀𝑗 ∈
𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) | 
| 21 | 20, 6, 19 | wral 3061 | . . . 4
wff
∀𝑖 ∈
𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) | 
| 22 |  | cmat 22411 | . . . . . 6
class 
Mat | 
| 23 | 19, 14, 22 | co 7431 | . . . . 5
class (𝑛 Mat 𝑟) | 
| 24 |  | cbs 17247 | . . . . 5
class
Base | 
| 25 | 23, 24 | cfv 6561 | . . . 4
class
(Base‘(𝑛 Mat
𝑟)) | 
| 26 | 21, 11, 25 | crab 3436 | . . 3
class {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} | 
| 27 | 2, 3, 4, 5, 26 | cmpo 7433 | . 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) | 
| 28 | 1, 27 | wceq 1540 | 1
wff  DMat =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |