Detailed syntax breakdown of Definition df-scmat
| Step | Hyp | Ref
| Expression |
| 1 | | cscmat 22495 |
. 2
class
ScMat |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cfn 8985 |
. . 3
class
Fin |
| 5 | | cvv 3480 |
. . 3
class
V |
| 6 | | va |
. . . 4
setvar 𝑎 |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑛 |
| 8 | 3 | cv 1539 |
. . . . 5
class 𝑟 |
| 9 | | cmat 22411 |
. . . . 5
class
Mat |
| 10 | 7, 8, 9 | co 7431 |
. . . 4
class (𝑛 Mat 𝑟) |
| 11 | | vm |
. . . . . . . 8
setvar 𝑚 |
| 12 | 11 | cv 1539 |
. . . . . . 7
class 𝑚 |
| 13 | | vc |
. . . . . . . . 9
setvar 𝑐 |
| 14 | 13 | cv 1539 |
. . . . . . . 8
class 𝑐 |
| 15 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑎 |
| 16 | | cur 20178 |
. . . . . . . . 9
class
1r |
| 17 | 15, 16 | cfv 6561 |
. . . . . . . 8
class
(1r‘𝑎) |
| 18 | | cvsca 17301 |
. . . . . . . . 9
class
·𝑠 |
| 19 | 15, 18 | cfv 6561 |
. . . . . . . 8
class (
·𝑠 ‘𝑎) |
| 20 | 14, 17, 19 | co 7431 |
. . . . . . 7
class (𝑐(
·𝑠 ‘𝑎)(1r‘𝑎)) |
| 21 | 12, 20 | wceq 1540 |
. . . . . 6
wff 𝑚 = (𝑐( ·𝑠
‘𝑎)(1r‘𝑎)) |
| 22 | | cbs 17247 |
. . . . . . 7
class
Base |
| 23 | 8, 22 | cfv 6561 |
. . . . . 6
class
(Base‘𝑟) |
| 24 | 21, 13, 23 | wrex 3070 |
. . . . 5
wff
∃𝑐 ∈
(Base‘𝑟)𝑚 = (𝑐( ·𝑠
‘𝑎)(1r‘𝑎)) |
| 25 | 15, 22 | cfv 6561 |
. . . . 5
class
(Base‘𝑎) |
| 26 | 24, 11, 25 | crab 3436 |
. . . 4
class {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠
‘𝑎)(1r‘𝑎))} |
| 27 | 6, 10, 26 | csb 3899 |
. . 3
class
⦋(𝑛
Mat 𝑟) / 𝑎⦌{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠
‘𝑎)(1r‘𝑎))} |
| 28 | 2, 3, 4, 5, 27 | cmpo 7433 |
. 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠
‘𝑎)(1r‘𝑎))}) |
| 29 | 1, 28 | wceq 1540 |
1
wff ScMat =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠
‘𝑎)(1r‘𝑎))}) |