| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dmatval.d | . 2
⊢ 𝐷 = (𝑁 DMat 𝑅) | 
| 2 |  | df-dmat 22496 | . . . 4
⊢  DMat =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) | 
| 3 | 2 | a1i 11 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) | 
| 4 |  | oveq12 7440 | . . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) | 
| 5 | 4 | fveq2d 6910 | . . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅))) | 
| 6 |  | dmatval.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝐴) | 
| 7 |  | dmatval.a | . . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 8 | 7 | fveq2i 6909 | . . . . . . 7
⊢
(Base‘𝐴) =
(Base‘(𝑁 Mat 𝑅)) | 
| 9 | 6, 8 | eqtri 2765 | . . . . . 6
⊢ 𝐵 = (Base‘(𝑁 Mat 𝑅)) | 
| 10 | 5, 9 | eqtr4di 2795 | . . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵) | 
| 11 |  | simpl 482 | . . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) | 
| 12 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) | 
| 13 |  | dmatval.0 | . . . . . . . . . . 11
⊢  0 =
(0g‘𝑅) | 
| 14 | 12, 13 | eqtr4di 2795 | . . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) | 
| 15 | 14 | adantl 481 | . . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (0g‘𝑟) = 0 ) | 
| 16 | 15 | eqeq2d 2748 | . . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑖𝑚𝑗) = (0g‘𝑟) ↔ (𝑖𝑚𝑗) = 0 )) | 
| 17 | 16 | imbi2d 340 | . . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) | 
| 18 | 11, 17 | raleqbidv 3346 | . . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) | 
| 19 | 11, 18 | raleqbidv 3346 | . . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) | 
| 20 | 10, 19 | rabeqbidv 3455 | . . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | 
| 21 | 20 | adantl 481 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | 
| 22 |  | simpl 482 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) | 
| 23 |  | elex 3501 | . . . 4
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | 
| 24 | 23 | adantl 481 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) | 
| 25 | 6 | fvexi 6920 | . . . 4
⊢ 𝐵 ∈ V | 
| 26 |  | rabexg 5337 | . . . 4
⊢ (𝐵 ∈ V → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈
V) | 
| 27 | 25, 26 | mp1i 13 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )} ∈
V) | 
| 28 | 3, 21, 22, 24, 27 | ovmpod 7585 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 DMat 𝑅) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | 
| 29 | 1, 28 | eqtrid 2789 | 1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |