MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatval Structured version   Visualization version   GIF version

Theorem dmatval 22519
Description: The set of 𝑁 x 𝑁 diagonal matrices over (a ring) 𝑅. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑚   𝑅,𝑖,𝑗,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑚)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑚)   𝑉(𝑖,𝑗,𝑚)   0 (𝑖,𝑗,𝑚)

Proof of Theorem dmatval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatval.d . 2 𝐷 = (𝑁 DMat 𝑅)
2 df-dmat 22517 . . . 4 DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
4 oveq12 7457 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
54fveq2d 6924 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
6 dmatval.b . . . . . . 7 𝐵 = (Base‘𝐴)
7 dmatval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
87fveq2i 6923 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
96, 8eqtri 2768 . . . . . 6 𝐵 = (Base‘(𝑁 Mat 𝑅))
105, 9eqtr4di 2798 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
11 simpl 482 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
12 fveq2 6920 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 dmatval.0 . . . . . . . . . . 11 0 = (0g𝑅)
1412, 13eqtr4di 2798 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514adantl 481 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (0g𝑟) = 0 )
1615eqeq2d 2751 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑚𝑗) = (0g𝑟) ↔ (𝑖𝑚𝑗) = 0 ))
1716imbi2d 340 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
1811, 17raleqbidv 3354 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
1911, 18raleqbidv 3354 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2010, 19rabeqbidv 3462 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
2120adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
22 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
23 elex 3509 . . . 4 (𝑅𝑉𝑅 ∈ V)
2423adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
256fvexi 6934 . . . 4 𝐵 ∈ V
26 rabexg 5355 . . . 4 (𝐵 ∈ V → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
2725, 26mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
283, 21, 22, 24, 27ovmpod 7602 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 DMat 𝑅) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
291, 28eqtrid 2792 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  cfv 6573  (class class class)co 7448  cmpo 7450  Fincfn 9003  Basecbs 17258  0gc0g 17499   Mat cmat 22432   DMat cdmat 22515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-dmat 22517
This theorem is referenced by:  dmatel  22520  dmatmulcl  22527  scmatdmat  22542  dmatbas  48132
  Copyright terms: Public domain W3C validator