MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatval Structured version   Visualization version   GIF version

Theorem dmatval 22386
Description: The set of 𝑁 x 𝑁 diagonal matrices over (a ring) 𝑅. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatval.a 𝐴 = (𝑁 Mat 𝑅)
dmatval.b 𝐵 = (Base‘𝐴)
dmatval.0 0 = (0g𝑅)
dmatval.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑚   𝑅,𝑖,𝑗,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑚)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑚)   𝑉(𝑖,𝑗,𝑚)   0 (𝑖,𝑗,𝑚)

Proof of Theorem dmatval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatval.d . 2 𝐷 = (𝑁 DMat 𝑅)
2 df-dmat 22384 . . . 4 DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
4 oveq12 7399 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
54fveq2d 6865 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
6 dmatval.b . . . . . . 7 𝐵 = (Base‘𝐴)
7 dmatval.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
87fveq2i 6864 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
96, 8eqtri 2753 . . . . . 6 𝐵 = (Base‘(𝑁 Mat 𝑅))
105, 9eqtr4di 2783 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
11 simpl 482 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
12 fveq2 6861 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
13 dmatval.0 . . . . . . . . . . 11 0 = (0g𝑅)
1412, 13eqtr4di 2783 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1514adantl 481 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (0g𝑟) = 0 )
1615eqeq2d 2741 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑚𝑗) = (0g𝑟) ↔ (𝑖𝑚𝑗) = 0 ))
1716imbi2d 340 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
1811, 17raleqbidv 3321 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
1911, 18raleqbidv 3321 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2010, 19rabeqbidv 3427 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
2120adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
22 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
23 elex 3471 . . . 4 (𝑅𝑉𝑅 ∈ V)
2423adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
256fvexi 6875 . . . 4 𝐵 ∈ V
26 rabexg 5295 . . . 4 (𝐵 ∈ V → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
2725, 26mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )} ∈ V)
283, 21, 22, 24, 27ovmpod 7544 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 DMat 𝑅) = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
291, 28eqtrid 2777 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐷 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cfv 6514  (class class class)co 7390  cmpo 7392  Fincfn 8921  Basecbs 17186  0gc0g 17409   Mat cmat 22301   DMat cdmat 22382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-dmat 22384
This theorem is referenced by:  dmatel  22387  dmatmulcl  22394  scmatdmat  22409  dmatbas  48396
  Copyright terms: Public domain W3C validator