Detailed syntax breakdown of Definition df-dmatalt
Step | Hyp | Ref
| Expression |
1 | | cdmatalt 45737 |
. 2
class
DMatALT |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cfn 8733 |
. . 3
class
Fin |
5 | | cvv 3432 |
. . 3
class
V |
6 | | va |
. . . 4
setvar 𝑎 |
7 | 2 | cv 1538 |
. . . . 5
class 𝑛 |
8 | 3 | cv 1538 |
. . . . 5
class 𝑟 |
9 | | cmat 21554 |
. . . . 5
class
Mat |
10 | 7, 8, 9 | co 7275 |
. . . 4
class (𝑛 Mat 𝑟) |
11 | 6 | cv 1538 |
. . . . 5
class 𝑎 |
12 | | vi |
. . . . . . . . . . 11
setvar 𝑖 |
13 | 12 | cv 1538 |
. . . . . . . . . 10
class 𝑖 |
14 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
15 | 14 | cv 1538 |
. . . . . . . . . 10
class 𝑗 |
16 | 13, 15 | wne 2943 |
. . . . . . . . 9
wff 𝑖 ≠ 𝑗 |
17 | | vm |
. . . . . . . . . . . 12
setvar 𝑚 |
18 | 17 | cv 1538 |
. . . . . . . . . . 11
class 𝑚 |
19 | 13, 15, 18 | co 7275 |
. . . . . . . . . 10
class (𝑖𝑚𝑗) |
20 | | c0g 17150 |
. . . . . . . . . . 11
class
0g |
21 | 8, 20 | cfv 6433 |
. . . . . . . . . 10
class
(0g‘𝑟) |
22 | 19, 21 | wceq 1539 |
. . . . . . . . 9
wff (𝑖𝑚𝑗) = (0g‘𝑟) |
23 | 16, 22 | wi 4 |
. . . . . . . 8
wff (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) |
24 | 23, 14, 7 | wral 3064 |
. . . . . . 7
wff
∀𝑗 ∈
𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) |
25 | 24, 12, 7 | wral 3064 |
. . . . . 6
wff
∀𝑖 ∈
𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) |
26 | | cbs 16912 |
. . . . . . 7
class
Base |
27 | 11, 26 | cfv 6433 |
. . . . . 6
class
(Base‘𝑎) |
28 | 25, 17, 27 | crab 3068 |
. . . . 5
class {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} |
29 | | cress 16941 |
. . . . 5
class
↾s |
30 | 11, 28, 29 | co 7275 |
. . . 4
class (𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
31 | 6, 10, 30 | csb 3832 |
. . 3
class
⦋(𝑛
Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
32 | 2, 3, 4, 5, 31 | cmpo 7277 |
. 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
33 | 1, 32 | wceq 1539 |
1
wff DMatALT =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |