Detailed syntax breakdown of Definition df-dmatalt
| Step | Hyp | Ref
| Expression |
| 1 | | cdmatalt 48247 |
. 2
class
DMatALT |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cfn 8966 |
. . 3
class
Fin |
| 5 | | cvv 3463 |
. . 3
class
V |
| 6 | | va |
. . . 4
setvar 𝑎 |
| 7 | 2 | cv 1538 |
. . . . 5
class 𝑛 |
| 8 | 3 | cv 1538 |
. . . . 5
class 𝑟 |
| 9 | | cmat 22358 |
. . . . 5
class
Mat |
| 10 | 7, 8, 9 | co 7412 |
. . . 4
class (𝑛 Mat 𝑟) |
| 11 | 6 | cv 1538 |
. . . . 5
class 𝑎 |
| 12 | | vi |
. . . . . . . . . . 11
setvar 𝑖 |
| 13 | 12 | cv 1538 |
. . . . . . . . . 10
class 𝑖 |
| 14 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
| 15 | 14 | cv 1538 |
. . . . . . . . . 10
class 𝑗 |
| 16 | 13, 15 | wne 2931 |
. . . . . . . . 9
wff 𝑖 ≠ 𝑗 |
| 17 | | vm |
. . . . . . . . . . . 12
setvar 𝑚 |
| 18 | 17 | cv 1538 |
. . . . . . . . . . 11
class 𝑚 |
| 19 | 13, 15, 18 | co 7412 |
. . . . . . . . . 10
class (𝑖𝑚𝑗) |
| 20 | | c0g 17454 |
. . . . . . . . . . 11
class
0g |
| 21 | 8, 20 | cfv 6540 |
. . . . . . . . . 10
class
(0g‘𝑟) |
| 22 | 19, 21 | wceq 1539 |
. . . . . . . . 9
wff (𝑖𝑚𝑗) = (0g‘𝑟) |
| 23 | 16, 22 | wi 4 |
. . . . . . . 8
wff (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) |
| 24 | 23, 14, 7 | wral 3050 |
. . . . . . 7
wff
∀𝑗 ∈
𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) |
| 25 | 24, 12, 7 | wral 3050 |
. . . . . 6
wff
∀𝑖 ∈
𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) |
| 26 | | cbs 17228 |
. . . . . . 7
class
Base |
| 27 | 11, 26 | cfv 6540 |
. . . . . 6
class
(Base‘𝑎) |
| 28 | 25, 17, 27 | crab 3419 |
. . . . 5
class {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} |
| 29 | | cress 17251 |
. . . . 5
class
↾s |
| 30 | 11, 28, 29 | co 7412 |
. . . 4
class (𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
| 31 | 6, 10, 30 | csb 3879 |
. . 3
class
⦋(𝑛
Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
| 32 | 2, 3, 4, 5, 31 | cmpo 7414 |
. 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
| 33 | 1, 32 | wceq 1539 |
1
wff DMatALT =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |