| Metamath
Proof Explorer Theorem List (p. 471 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mdandyvrx15 47001 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | H15NH16TH15IH16 47002 | Given 15 hypotheses and a 16th hypothesis, there exists a proof the 15 imply the 16th. (Contributed by Jarvin Udandy, 8-Sep-2016.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ 𝜂 & ⊢ 𝜁 & ⊢ 𝜎 & ⊢ 𝜌 & ⊢ 𝜇 & ⊢ 𝜆 & ⊢ 𝜅 & ⊢ jph & ⊢ jps & ⊢ jch & ⊢ jth ⇒ ⊢ (((((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ jph) ∧ jps) ∧ jch) → jth) | ||
| Theorem | dandysum2p2e4 47003 |
CONTRADICTION PROVED AT 1 + 1 = 2 .
Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses. Note: Values that when added would exceed a 4bit value are not supported. Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2', 0010 would be '4'. How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit. ( et <-> F ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ (𝜃 ∧ 𝜏)) & ⊢ (𝜓 ↔ (𝜂 ∧ 𝜁)) & ⊢ (𝜒 ↔ (𝜎 ∧ 𝜌)) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) & ⊢ (𝜁 ↔ ⊤) & ⊢ (𝜎 ↔ ⊥) & ⊢ (𝜌 ↔ ⊥) & ⊢ (𝜇 ↔ ⊥) & ⊢ (𝜆 ↔ ⊥) & ⊢ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏))) & ⊢ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑)) & ⊢ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓)) & ⊢ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒)) ⇒ ⊢ ((((((((((((((((𝜑 ↔ (𝜃 ∧ 𝜏)) ∧ (𝜓 ↔ (𝜂 ∧ 𝜁))) ∧ (𝜒 ↔ (𝜎 ∧ 𝜌))) ∧ (𝜃 ↔ ⊥)) ∧ (𝜏 ↔ ⊥)) ∧ (𝜂 ↔ ⊤)) ∧ (𝜁 ↔ ⊤)) ∧ (𝜎 ↔ ⊥)) ∧ (𝜌 ↔ ⊥)) ∧ (𝜇 ↔ ⊥)) ∧ (𝜆 ↔ ⊥)) ∧ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏)))) ∧ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑))) ∧ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓))) ∧ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒))) → ((((𝜅 ↔ ⊥) ∧ (jph ↔ ⊥)) ∧ (jps ↔ ⊤)) ∧ (jch ↔ ⊥))) | ||
| Theorem | mdandysum2p2e4 47004 |
CONTRADICTION PROVED AT 1 + 1 = 2 . Luckily Mario Carneiro did a
successful version of his own.
See Mario's Relevant Work: Half adder and full adder in propositional calculus. Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses. Note: Values that when added would exceed a 4bit value are not supported. Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2'. 0010 would be '4'. How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit. ( et <-> F. ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. In mdandysum2p2e4, one might imagine what jth or jta could be then do the math with their truths. Also limited to the restriction jth, jta are having opposite truths equivalent to the stated truth constants. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (jth ↔ ⊥) & ⊢ (jta ↔ ⊤) & ⊢ (𝜑 ↔ (𝜃 ∧ 𝜏)) & ⊢ (𝜓 ↔ (𝜂 ∧ 𝜁)) & ⊢ (𝜒 ↔ (𝜎 ∧ 𝜌)) & ⊢ (𝜃 ↔ jth) & ⊢ (𝜏 ↔ jth) & ⊢ (𝜂 ↔ jta) & ⊢ (𝜁 ↔ jta) & ⊢ (𝜎 ↔ jth) & ⊢ (𝜌 ↔ jth) & ⊢ (𝜇 ↔ jth) & ⊢ (𝜆 ↔ jth) & ⊢ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏))) & ⊢ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑)) & ⊢ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓)) & ⊢ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒)) ⇒ ⊢ ((((((((((((((((𝜑 ↔ (𝜃 ∧ 𝜏)) ∧ (𝜓 ↔ (𝜂 ∧ 𝜁))) ∧ (𝜒 ↔ (𝜎 ∧ 𝜌))) ∧ (𝜃 ↔ ⊥)) ∧ (𝜏 ↔ ⊥)) ∧ (𝜂 ↔ ⊤)) ∧ (𝜁 ↔ ⊤)) ∧ (𝜎 ↔ ⊥)) ∧ (𝜌 ↔ ⊥)) ∧ (𝜇 ↔ ⊥)) ∧ (𝜆 ↔ ⊥)) ∧ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏)))) ∧ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑))) ∧ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓))) ∧ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒))) → ((((𝜅 ↔ ⊥) ∧ (jph ↔ ⊥)) ∧ (jps ↔ ⊤)) ∧ (jch ↔ ⊥))) | ||
| Theorem | adh-jarrsc 47005 | Replacement of a nested antecedent with an outer antecedent. Commuted simplificated form of elimination of a nested antecedent. Also holds intuitionistically. Polish prefix notation: CCCpqrCsCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜃 → (𝜓 → 𝜒))) | ||
Minimal implicational calculus, or intuitionistic implicational calculus, or positive implicational calculus, is the implicational fragment of minimal calculus (which is also the implicational fragment of intuitionistic calculus and of positive calculus). It is sometimes called "C-pure intuitionism" since the letter C is used to denote implication in Polish prefix notation. It can be axiomatized by the inference rule of modus ponens ax-mp 5 together with the axioms { ax-1 6, ax-2 7 } (sometimes written KS), or with { imim1 83, ax-1 6, pm2.43 56 } (written B'KW), or with { imim2 58, pm2.04 90, ax-1 6, pm2.43 56 } (written BCKW), or with the single axiom adh-minim 47006, or with the single axiom adh-minimp 47018. This section proves first adh-minim 47006 from { ax-1 6, ax-2 7 }, followed by the converse, due to Ivo Thomas; and then it proves adh-minimp 47018 from { ax-1 6, ax-2 7 }, also followed by the converse, also due to Ivo Thomas. Sources for this section are * Carew Arthur Meredith, A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170; * Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477, in which the derivations of { ax-1 6, ax-2 7 } from adh-minim 47006 are shortened (compared to Meredith's derivations in the aforementioned paper); * Carew Arthur Meredith and Arthur Norman Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, volume IV, number 3, July 1963, pages 171--187; and * the webpage https://web.ics.purdue.edu/~dulrich/C-pure-intuitionism-page.htm 47006 on Dolph Edward "Ted" Ulrich's website, where these and other single axioms for the minimal implicational calculus are listed. This entire section also holds intuitionistically. Users of the Polish prefix notation also often use a compact notation for proof derivations known as the D-notation where "D" stands for "condensed Detachment". For instance, "D21" means detaching ax-1 6 from ax-2 7, that is, using modus ponens ax-mp 5 with ax-1 6 as minor premise and ax-2 7 as major premise. When the numbered lemmas surpass 10, dots are added between the numbers. D-strings are accepted by the grammar Dundotted := digit | "D" Dundotted Dundotted ; Ddotted := digit + | "D" Ddotted "." Ddotted ; Dstr := Dundotted | Ddotted . (Contributed by BJ, 11-Apr-2021.) (Revised by ADH, 10-Nov-2023.) | ||
| Theorem | adh-minim 47006 | A single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. This is the axiom from Carew Arthur Meredith, A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. A two-line review by Alonzo Church of this article can be found in The Journal of Symbolic Logic, volume 19, issue 2, June 1954, page 144, https://doi.org/10.2307/2268914. Known as "HI-1" on Dolph Edward "Ted" Ulrich's web page. In the next 6 lemmas and 3 theorems, ax-1 6 and ax-2 7 are derived from this single axiom in 16 detachments (instances of ax-mp 5) in total. Polish prefix notation: CCCpqrCsCCqCrtCqt . (Contributed by ADH, 10-Nov-2023.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | ||
| Theorem | adh-minim-ax1-ax2-lem1 47007 | First lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 47006 and ax-mp 5. Polish prefix notation: CpCCqCCrCCsCqtCstuCqu . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜂)) → (𝜓 → 𝜂))) | ||
| Theorem | adh-minim-ax1-ax2-lem2 47008 | Second lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 47006 and ax-mp 5. Polish prefix notation: CCpCCqCCrCpsCrstCpt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → ((𝜓 → ((𝜒 → (𝜑 → 𝜃)) → (𝜒 → 𝜃))) → 𝜏)) → (𝜑 → 𝜏)) | ||
| Theorem | adh-minim-ax1-ax2-lem3 47009 | Third lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 47006 and ax-mp 5. Polish prefix notation: CCpCqrCqCsCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜃 → (𝜑 → 𝜒)))) | ||
| Theorem | adh-minim-ax1-ax2-lem4 47010 | Fourth lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 47006 and ax-mp 5. Polish prefix notation: CCCpqrCCqCrsCqs . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜃)) → (𝜓 → 𝜃))) | ||
| Theorem | adh-minim-ax1 47011 | Derivation of ax-1 6 from adh-minim 47006 and ax-mp 5. Carew Arthur Meredith derived ax-1 6 in A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CpCqp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜑)) | ||
| Theorem | adh-minim-ax2-lem5 47012 | Fifth lemma for the derivation of ax-2 7 from adh-minim 47006 and ax-mp 5. Polish prefix notation: CpCCCqrsCCrCstCrt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (((𝜓 → 𝜒) → 𝜃) → ((𝜒 → (𝜃 → 𝜏)) → (𝜒 → 𝜏)))) | ||
| Theorem | adh-minim-ax2-lem6 47013 | Sixth lemma for the derivation of ax-2 7 from adh-minim 47006 and ax-mp 5. Polish prefix notation: CCpCCCCqrsCCrCstCrtuCpu . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → ((((𝜓 → 𝜒) → 𝜃) → ((𝜒 → (𝜃 → 𝜏)) → (𝜒 → 𝜏))) → 𝜂)) → (𝜑 → 𝜂)) | ||
| Theorem | adh-minim-ax2c 47014 | Derivation of a commuted form of ax-2 7 from adh-minim 47006 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minim-ax2 47015 | Derivation of ax-2 7 from adh-minim 47006 and ax-mp 5. Carew Arthur Meredith derived ax-2 7 in A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minim-idALT 47016 | Derivation of id 22 (reflexivity of implication, PM *2.08 WhiteheadRussell p. 101) from adh-minim-ax1 47011, adh-minim-ax2 47015, and ax-mp 5. It uses the derivation written DD211 in D-notation. (See head comment for an explanation.) Polish prefix notation: Cpp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜑) | ||
| Theorem | adh-minim-pm2.43 47017 | Derivation of pm2.43 56 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minim-ax1 47011, adh-minim-ax2 47015, and ax-mp 5. It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
| Theorem | adh-minimp 47018 | Another single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. Among single axioms of this length, it is the one with simplest antecedents (i.e., in the corresponding ordering of binary trees which first compares left subtrees, it is the first one). Known as "HI-2" on Dolph Edward "Ted" Ulrich's web page. In the next 4 lemmas and 5 theorems, ax-1 6 and ax-2 7 are derived from this other single axiom in 20 detachments (instances of ax-mp 5) in total. Polish prefix notation: CpCCqrCCCsqCrtCqt ; or CtCCpqCCCspCqrCpr in Carew Arthur Meredith and Arthur Norman Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, volume IV, number 3, July 1963, pages 171--187, on page 180. (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) |
| ⊢ (𝜑 → ((𝜓 → 𝜒) → (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | ||
| Theorem | adh-minimp-jarr-imim1-ax2c-lem1 47019 | First lemma for the derivation of jarr 106, imim1 83, and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7, from adh-minimp 47018 and ax-mp 5. Polish prefix notation: CCpqCCCrpCqsCps . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃))) | ||
| Theorem | adh-minimp-jarr-lem2 47020 | Second lemma for the derivation of jarr 106, and indirectly ax-1 6, a commuted form of ax-2 7, and ax-2 7 proper, from adh-minimp 47018 and ax-mp 5. Polish prefix notation: CCCpqCCCrsCCCtrCsuCruvCqv . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → (((𝜒 → 𝜃) → (((𝜏 → 𝜒) → (𝜃 → 𝜂)) → (𝜒 → 𝜂))) → 𝜁)) → (𝜓 → 𝜁)) | ||
| Theorem | adh-minimp-jarr-ax2c-lem3 47021 | Third lemma for the derivation of jarr 106 and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7 proper , from adh-minimp 47018 and ax-mp 5. Polish prefix notation: CCCCpqCCCrpCqsCpstt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃))) → 𝜏) → 𝜏) | ||
| Theorem | adh-minimp-sylsimp 47022 | Derivation of jarr 106 (also called "syll-simp") from minimp 1621 and ax-mp 5. Polish prefix notation: CCCpqrCqr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜒)) | ||
| Theorem | adh-minimp-ax1 47023 | Derivation of ax-1 6 from adh-minimp 47018 and ax-mp 5. Polish prefix notation: CpCqp . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜑)) | ||
| Theorem | adh-minimp-imim1 47024 | Derivation of imim1 83 ("left antimonotonicity of implication", theorem *2.06 of [WhiteheadRussell] p. 100) from adh-minimp 47018 and ax-mp 5. Polish prefix notation: CCpqCCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minimp-ax2c 47025 | Derivation of a commuted form of ax-2 7 from adh-minimp 47018 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minimp-ax2-lem4 47026 | Fourth lemma for the derivation of ax-2 7 from adh-minimp 47018 and ax-mp 5. Polish prefix notation: CpCCqCprCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → 𝜒))) | ||
| Theorem | adh-minimp-ax2 47027 | Derivation of ax-2 7 from adh-minimp 47018 and ax-mp 5. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minimp-idALT 47028 | Derivation of id 22 (reflexivity of implication, PM *2.08 WhiteheadRussell p. 101) from adh-minimp-ax1 47023, adh-minimp-ax2 47027, and ax-mp 5. It uses the derivation written DD211 in D-notation. (See head comment for an explanation.) Polish prefix notation: Cpp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜑) | ||
| Theorem | adh-minimp-pm2.43 47029 | Derivation of pm2.43 56 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minimp-ax1 47023, adh-minimp-ax2 47027, and ax-mp 5. It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) Polish prefix notation: CCpCpqCpq . (Contributed by BJ, 31-May-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
| Theorem | n0nsn2el 47030* | If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
| Theorem | eusnsn 47031* | There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.) |
| ⊢ ∃!𝑥{𝑥} = {𝑦} | ||
| Theorem | absnsb 47032* | If the class abstraction {𝑥 ∣ 𝜑} associated with the wff 𝜑 is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022.) |
| ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑) | ||
| Theorem | euabsneu 47033* | Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥 ∣ 𝜑} is a singleton. Variant of euabsn2 4692 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.) |
| ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
| Theorem | elprneb 47034 | An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020.) |
| ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) | ||
| Theorem | oppr 47035 | Equality for ordered pairs implies equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴, 𝐵} = {𝐶, 𝐷})) | ||
| Theorem | opprb 47036 | Equality for unordered pairs corresponds to equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ∨ 〈𝐴, 𝐵〉 = 〈𝐷, 𝐶〉))) | ||
| Theorem | or2expropbilem1 47037* | Lemma 1 for or2expropbi 47039 and ich2exprop 47476. (Contributed by AV, 16-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) → (𝜑 → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)))) | ||
| Theorem | or2expropbilem2 47038* | Lemma 2 for or2expropbi 47039 and ich2exprop 47476. (Contributed by AV, 16-Jul-2023.) |
| ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) | ||
| Theorem | or2expropbi 47039* | If two classes are strictly ordered, there is an ordered pair of both classes fulfilling a wff iff there is an unordered pair of both classes fulfilling the wff. (Contributed by AV, 26-Aug-2023.) |
| ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) ↔ ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) | ||
| Theorem | eubrv 47040* | If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) | ||
| Theorem | eubrdm 47041* | If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | eldmressn 47042 | Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) | ||
| Theorem | iota0def 47043* | Example for a defined iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.) |
| ⊢ (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ | ||
| Theorem | iota0ndef 47044* | Example for an undefined iota being the empty set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). (Contributed by AV, 24-Aug-2022.) |
| ⊢ (℩𝑥∀𝑦 𝑦 ∈ 𝑥) = ∅ | ||
| Theorem | fveqvfvv 47045 | If a function's value at an argument is the universal class (which can never be the case because of fvex 6874), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) | ||
| Theorem | fnresfnco 47046 | Composition of two functions, similar to fnco 6639. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
| ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) | ||
| Theorem | funcoressn 47047 | A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
| ⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) | ||
| Theorem | funressnfv 47048 | A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun (𝐹 ↾ {(𝐺‘𝑋)})) | ||
| Theorem | funressndmfvrn 47049 | The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐴 is in the domain of the function 𝐹. It is sufficient that 𝐹 is a function at 𝐴. (Contributed by AV, 1-Sep-2022.) |
| ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | ||
| Theorem | funressnvmo 47050* | A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) | ||
| Theorem | funressnmo 47051* | A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) | ||
| Theorem | funressneu 47052* | There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu 6544. 𝐴 ∈ V is required because otherwise ∃!𝑦𝐴𝐹𝑦, see brprcneu 6851. (Contributed by AV, 7-Sep-2022.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | ||
| Theorem | fresfo 47053 | Conditions for a restriction to be an onto function. Part of fresf1o 32562. (Contributed by AV, 29-Sep-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) | ||
| Theorem | fsetsniunop 47054* | The class of all functions from a (proper) singleton into 𝐵 is the union of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.) |
| ⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = ∪ 𝑏 ∈ 𝐵 {{〈𝑆, 𝑏〉}}) | ||
| Theorem | fsetabsnop 47055* | The class of all functions from a (proper) singleton into 𝐵 is the class of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.) |
| ⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) | ||
| Theorem | fsetsnf 47056* | The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) | ||
| Theorem | fsetsnf1 47057* | The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1→𝐴) | ||
| Theorem | fsetsnfo 47058* | The mapping of an element of a class to a singleton function is a surjection. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–onto→𝐴) | ||
| Theorem | fsetsnf1o 47059* | The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1-onto→𝐴) | ||
| Theorem | fsetsnprcnex 47060* | The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) | ||
| Theorem | cfsetssfset 47061 | The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} ⇒ ⊢ 𝐹 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | ||
| Theorem | cfsetsnfsetfv 47062* | The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) | ||
| Theorem | cfsetsnfsetf 47063* | The mapping of the class of singleton functions into the class of constant functions is a function. (Contributed by AV, 14-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺⟶𝐹) | ||
| Theorem | cfsetsnfsetf1 47064* | The mapping of the class of singleton functions into the class of constant functions is an injection. (Contributed by AV, 14-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1→𝐹) | ||
| Theorem | cfsetsnfsetfo 47065* | The mapping of the class of singleton functions into the class of constant functions is a surjection. (Contributed by AV, 14-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–onto→𝐹) | ||
| Theorem | cfsetsnfsetf1o 47066* | The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1-onto→𝐹) | ||
| Theorem | fsetprcnexALT 47067* | First version of proof for fsetprcnex 8838, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | ||
| Theorem | fcoreslem1 47068 | Lemma 1 for fcores 47072. (Contributed by AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) ⇒ ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) | ||
| Theorem | fcoreslem2 47069 | Lemma 2 for fcores 47072. (Contributed by AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) ⇒ ⊢ (𝜑 → ran 𝑋 = 𝐸) | ||
| Theorem | fcoreslem3 47070 | Lemma 3 for fcores 47072. (Contributed by AV, 13-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) ⇒ ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) | ||
| Theorem | fcoreslem4 47071 | Lemma 4 for fcores 47072. (Contributed by AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) | ||
| Theorem | fcores 47072 | Every composite function (𝐺 ∘ 𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) | ||
| Theorem | fcoresf1lem 47073 | Lemma for fcoresf1 47074. (Contributed by AV, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) | ||
| Theorem | fcoresf1 47074 | If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024.) (Revised by AV, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) ⇒ ⊢ (𝜑 → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷)) | ||
| Theorem | fcoresf1b 47075 | A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) | ||
| Theorem | fcoresfo 47076 | If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ⇒ ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) | ||
| Theorem | fcoresfob 47077 | A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) | ||
| Theorem | fcoresf1ob 47078 | A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) | ||
| Theorem | f1cof1blem 47079 | Lemma for f1cof1b 47082 and focofob 47085. (Contributed by AV, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → ran 𝐹 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑃 = 𝐴 ∧ 𝐸 = 𝐶) ∧ (𝑋 = 𝐹 ∧ 𝑌 = 𝐺))) | ||
| Theorem | 3f1oss1 47080 | The composition of three bijections as bijection from the image of the domain onto the image of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.) |
| ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ((𝐻 ∘ 𝐺) ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷)) | ||
| Theorem | 3f1oss2 47081 | The composition of three bijections as bijection from the image of the converse of the domain onto the image of the converse of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.) |
| ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) | ||
| Theorem | f1cof1b 47082 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is injective iff 𝐹 and 𝐺 are both injective. (Contributed by GL and AV, 19-Sep-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷))) | ||
| Theorem | funfocofob 47083 | If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) | ||
| Theorem | fnfocofob 47084 | If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | ||
| Theorem | focofob 47085 | If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 and 𝐹 as function to the domain of 𝐺 are both surjective. Symmetric version of fnfocofob 47084 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐶 ∧ 𝐺:𝐶–onto→𝐷))) | ||
| Theorem | f1ocof1ob 47086 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | ||
| Theorem | f1ocof1ob2 47087 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 47086 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1-onto→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | ||
| Syntax | caiota 47088 | Extend class notation with an alternative for Russell's definition of a description binder (inverted iota). |
| class (℩'𝑥𝜑) | ||
| Theorem | aiotajust 47089* | Soundness justification theorem for df-aiota 47090. (Contributed by AV, 24-Aug-2022.) |
| ⊢ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | ||
| Definition | df-aiota 47090* |
Alternate version of Russell's definition of a description binder, which
can be read as "the unique 𝑥 such that 𝜑", where 𝜑
ordinarily contains 𝑥 as a free variable. Our definition
is
meaningful only when there is exactly one 𝑥 such that 𝜑 is true
(see aiotaval 47100); otherwise, it is not a set (see aiotaexb 47094), or even
more concrete, it is the universe V (see aiotavb 47095). Since this
is an alternative for df-iota 6467, we call this symbol ℩'
alternate iota in the following.
The advantage of this definition is the clear distinguishability of the defined and undefined cases: the alternate iota over a wff is defined iff it is a set (see aiotaexb 47094). With the original definition, there is no corresponding theorem (∃!𝑥𝜑 ↔ (℩𝑥𝜑) ≠ ∅), because ∅ can be a valid unique set satisfying a wff (see, for example, iota0def 47043). Only the right to left implication would hold, see (negated) iotanul 6492. For defined cases, however, both definitions df-iota 6467 and df-aiota 47090 are equivalent, see reuaiotaiota 47093. (Proposed by BJ, 13-Aug-2022.) (Contributed by AV, 24-Aug-2022.) |
| ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | ||
| Theorem | dfaiota2 47091* | Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in [Quine] p. 56. (Contributed by AV, 24-Aug-2022.) |
| ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | ||
| Theorem | reuabaiotaiota 47092* | The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥 ∣ 𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
| Theorem | reuaiotaiota 47093 | The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
| Theorem | aiotaexb 47094 | The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) | ||
| Theorem | aiotavb 47095 | The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) | ||
| Theorem | aiotaint 47096 | This is to df-aiota 47090 what iotauni 6489 is to df-iota 6467 (it uses intersection like df-aiota 47090, similar to iotauni 6489 using union like df-iota 6467; we could also prove an analogous result using union here too, in the same way that we have iotaint 6490). (Contributed by BJ, 31-Aug-2024.) |
| ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
| Theorem | dfaiota3 47097 | Alternate definition of ℩': this is to df-aiota 47090 what dfiota4 6506 is to df-iota 6467. operation using the if operator. It is simpler than df-aiota 47090 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
| ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) | ||
| Theorem | iotan0aiotaex 47098 | If the iota over a wff 𝜑 is not empty, the alternate iota over 𝜑 is a set. (Contributed by AV, 25-Aug-2022.) |
| ⊢ ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V) | ||
| Theorem | aiotaexaiotaiota 47099 | The alternate iota over a wff 𝜑 is a set iff the iota and the alternate iota over 𝜑 are equal. (Contributed by AV, 25-Aug-2022.) |
| ⊢ ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
| Theorem | aiotaval 47100* | Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |