| Metamath
Proof Explorer Theorem List (p. 471 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | adh-minimp-jarr-ax2c-lem3 47001 | Third lemma for the derivation of jarr 106 and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7 proper , from adh-minimp 46998 and ax-mp 5. Polish prefix notation: CCCCpqCCCrpCqsCpstt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃))) → 𝜏) → 𝜏) | ||
| Theorem | adh-minimp-sylsimp 47002 | Derivation of jarr 106 (also called "syll-simp") from minimp 1621 and ax-mp 5. Polish prefix notation: CCCpqrCqr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜒)) | ||
| Theorem | adh-minimp-ax1 47003 | Derivation of ax-1 6 from adh-minimp 46998 and ax-mp 5. Polish prefix notation: CpCqp . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜑)) | ||
| Theorem | adh-minimp-imim1 47004 | Derivation of imim1 83 ("left antimonotonicity of implication", theorem *2.06 of [WhiteheadRussell] p. 100) from adh-minimp 46998 and ax-mp 5. Polish prefix notation: CCpqCCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minimp-ax2c 47005 | Derivation of a commuted form of ax-2 7 from adh-minimp 46998 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minimp-ax2-lem4 47006 | Fourth lemma for the derivation of ax-2 7 from adh-minimp 46998 and ax-mp 5. Polish prefix notation: CpCCqCprCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → ((𝜓 → (𝜑 → 𝜒)) → (𝜓 → 𝜒))) | ||
| Theorem | adh-minimp-ax2 47007 | Derivation of ax-2 7 from adh-minimp 46998 and ax-mp 5. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minimp-idALT 47008 | Derivation of id 22 (reflexivity of implication, PM *2.08 WhiteheadRussell p. 101) from adh-minimp-ax1 47003, adh-minimp-ax2 47007, and ax-mp 5. It uses the derivation written DD211 in D-notation. (See head comment for an explanation.) Polish prefix notation: Cpp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜑) | ||
| Theorem | adh-minimp-pm2.43 47009 | Derivation of pm2.43 56 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minimp-ax1 47003, adh-minimp-ax2 47007, and ax-mp 5. It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) Polish prefix notation: CCpCpqCpq . (Contributed by BJ, 31-May-2021.) (Revised by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
| Theorem | n0nsn2el 47010* | If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | ||
| Theorem | eusnsn 47011* | There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.) |
| ⊢ ∃!𝑥{𝑥} = {𝑦} | ||
| Theorem | absnsb 47012* | If the class abstraction {𝑥 ∣ 𝜑} associated with the wff 𝜑 is a singleton, the wff is true for the singleton element. (Contributed by AV, 24-Aug-2022.) |
| ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → [𝑦 / 𝑥]𝜑) | ||
| Theorem | euabsneu 47013* | Another way to express existential uniqueness of a wff 𝜑: its associated class abstraction {𝑥 ∣ 𝜑} is a singleton. Variant of euabsn2 4679 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022.) |
| ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
| Theorem | elprneb 47014 | An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020.) |
| ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) | ||
| Theorem | oppr 47015 | Equality for ordered pairs implies equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴, 𝐵} = {𝐶, 𝐷})) | ||
| Theorem | opprb 47016 | Equality for unordered pairs corresponds to equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ∨ 〈𝐴, 𝐵〉 = 〈𝐷, 𝐶〉))) | ||
| Theorem | or2expropbilem1 47017* | Lemma 1 for or2expropbi 47019 and ich2exprop 47456. (Contributed by AV, 16-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 = 𝑎 ∧ 𝐵 = 𝑏) → (𝜑 → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)))) | ||
| Theorem | or2expropbilem2 47018* | Lemma 2 for or2expropbi 47019 and ich2exprop 47456. (Contributed by AV, 16-Jul-2023.) |
| ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ [𝑦 / 𝑏][𝑥 / 𝑎]𝜑)) | ||
| Theorem | or2expropbi 47019* | If two classes are strictly ordered, there is an ordered pair of both classes fulfilling a wff iff there is an unordered pair of both classes fulfilling the wff. (Contributed by AV, 26-Aug-2023.) |
| ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑅 Or 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴𝑅𝐵)) → (∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ (𝑎𝑅𝑏 ∧ 𝜑)) ↔ ∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ (𝑎𝑅𝑏 ∧ 𝜑)))) | ||
| Theorem | eubrv 47020* | If there is a unique set which is related to a class, then the class must be a set. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) | ||
| Theorem | eubrdm 47021* | If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ dom 𝑅) | ||
| Theorem | eldmressn 47022 | Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ (𝐵 ∈ dom (𝐹 ↾ {𝐴}) → 𝐵 = 𝐴) | ||
| Theorem | iota0def 47023* | Example for a defined iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). (Contributed by AV, 24-Aug-2022.) |
| ⊢ (℩𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ | ||
| Theorem | iota0ndef 47024* | Example for an undefined iota being the empty set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). (Contributed by AV, 24-Aug-2022.) |
| ⊢ (℩𝑥∀𝑦 𝑦 ∈ 𝑥) = ∅ | ||
| Theorem | fveqvfvv 47025 | If a function's value at an argument is the universal class (which can never be the case because of fvex 6839), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 119). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = 𝐵) | ||
| Theorem | fnresfnco 47026 | Composition of two functions, similar to fnco 6604. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
| ⊢ (((𝐹 ↾ ran 𝐺) Fn ran 𝐺 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐵) | ||
| Theorem | funcoressn 47027 | A composition restricted to a singleton is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) |
| ⊢ ((((𝐺‘𝑋) ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {(𝐺‘𝑋)})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) | ||
| Theorem | funressnfv 47028 | A restriction to a singleton with a function value is a function under certain conditions. (Contributed by Alexander van der Vekens, 25-Jul-2017.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (((𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ Fun ((𝐹 ∘ 𝐺) ↾ {𝑋})) ∧ (𝐺 Fn 𝐴 ∧ 𝑋 ∈ 𝐴)) → Fun (𝐹 ↾ {(𝐺‘𝑋)})) | ||
| Theorem | funressndmfvrn 47029 | The value of a function 𝐹 at a set 𝐴 is in the range of the function 𝐹 if 𝐴 is in the domain of the function 𝐹. It is sufficient that 𝐹 is a function at 𝐴. (Contributed by AV, 1-Sep-2022.) |
| ⊢ ((Fun (𝐹 ↾ {𝐴}) ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | ||
| Theorem | funressnvmo 47030* | A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (Fun (𝐹 ↾ {𝑥}) → ∃*𝑦 𝑥𝐹𝑦) | ||
| Theorem | funressnmo 47031* | A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Fun (𝐹 ↾ {𝐴})) → ∃*𝑦 𝐴𝐹𝑦) | ||
| Theorem | funressneu 47032* | There is exactly one value of a class which is a function restricted to a singleton, analogous to funeu 6511. 𝐴 ∈ V is required because otherwise ∃!𝑦𝐴𝐹𝑦, see brprcneu 6816. (Contributed by AV, 7-Sep-2022.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴}) ∧ 𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦) | ||
| Theorem | fresfo 47033 | Conditions for a restriction to be an onto function. Part of fresf1o 32588. (Contributed by AV, 29-Sep-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) | ||
| Theorem | fsetsniunop 47034* | The class of all functions from a (proper) singleton into 𝐵 is the union of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.) |
| ⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = ∪ 𝑏 ∈ 𝐵 {{〈𝑆, 𝑏〉}}) | ||
| Theorem | fsetabsnop 47035* | The class of all functions from a (proper) singleton into 𝐵 is the class of all the singletons of (proper) ordered pairs over the elements of 𝐵 as second component. (Contributed by AV, 13-Sep-2024.) |
| ⊢ (𝑆 ∈ 𝑉 → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}}) | ||
| Theorem | fsetsnf 47036* | The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) | ||
| Theorem | fsetsnf1 47037* | The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1→𝐴) | ||
| Theorem | fsetsnfo 47038* | The mapping of an element of a class to a singleton function is a surjection. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–onto→𝐴) | ||
| Theorem | fsetsnf1o 47039* | The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵–1-1-onto→𝐴) | ||
| Theorem | fsetsnprcnex 47040* | The class of all functions from a (proper) singleton into a proper class 𝐵 is not a set. (Contributed by AV, 13-Sep-2024.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:{𝑆}⟶𝐵} ∉ V) | ||
| Theorem | cfsetssfset 47041 | The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} ⇒ ⊢ 𝐹 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} | ||
| Theorem | cfsetsnfsetfv 47042* | The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) | ||
| Theorem | cfsetsnfsetf 47043* | The mapping of the class of singleton functions into the class of constant functions is a function. (Contributed by AV, 14-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺⟶𝐹) | ||
| Theorem | cfsetsnfsetf1 47044* | The mapping of the class of singleton functions into the class of constant functions is an injection. (Contributed by AV, 14-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1→𝐹) | ||
| Theorem | cfsetsnfsetfo 47045* | The mapping of the class of singleton functions into the class of constant functions is a surjection. (Contributed by AV, 14-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–onto→𝐹) | ||
| Theorem | cfsetsnfsetf1o 47046* | The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024.) |
| ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} & ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} & ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → 𝐻:𝐺–1-1-onto→𝐹) | ||
| Theorem | fsetprcnexALT 47047* | First version of proof for fsetprcnex 8796, which was much more complicated. (Contributed by AV, 14-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓 ∣ 𝑓:𝐴⟶𝐵} ∉ V) | ||
| Theorem | fcoreslem1 47048 | Lemma 1 for fcores 47052. (Contributed by AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) ⇒ ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) | ||
| Theorem | fcoreslem2 47049 | Lemma 2 for fcores 47052. (Contributed by AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) ⇒ ⊢ (𝜑 → ran 𝑋 = 𝐸) | ||
| Theorem | fcoreslem3 47050 | Lemma 3 for fcores 47052. (Contributed by AV, 13-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) ⇒ ⊢ (𝜑 → 𝑋:𝑃–onto→𝐸) | ||
| Theorem | fcoreslem4 47051 | Lemma 4 for fcores 47052. (Contributed by AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → (𝑌 ∘ 𝑋) Fn 𝑃) | ||
| Theorem | fcores 47052 | Every composite function (𝐺 ∘ 𝐹) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑌 ∘ 𝑋)) | ||
| Theorem | fcoresf1lem 47053 | Lemma for fcoresf1 47054. (Contributed by AV, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ ((𝜑 ∧ 𝑍 ∈ 𝑃) → ((𝐺 ∘ 𝐹)‘𝑍) = (𝑌‘(𝑋‘𝑍))) | ||
| Theorem | fcoresf1 47054 | If a composition is injective, then the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 18-Sep-2024.) (Revised by AV, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–1-1→𝐷) ⇒ ⊢ (𝜑 → (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷)) | ||
| Theorem | fcoresf1b 47055 | A composition is injective iff the restrictions of its components to the minimum domains are injective. (Contributed by GL and AV, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1→𝐷))) | ||
| Theorem | fcoresfo 47056 | If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝑃–onto→𝐷) ⇒ ⊢ (𝜑 → 𝑌:𝐸–onto→𝐷) | ||
| Theorem | fcoresfob 47057 | A composition is surjective iff the restriction of its first component to the minimum domain is surjective. (Contributed by GL and AV, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–onto→𝐷 ↔ 𝑌:𝐸–onto→𝐷)) | ||
| Theorem | fcoresf1ob 47058 | A composition is bijective iff the restriction of its first component to the minimum domain is bijective and the restriction of its second component to the minimum domain is injective. (Contributed by GL and AV, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) ⇒ ⊢ (𝜑 → ((𝐺 ∘ 𝐹):𝑃–1-1-onto→𝐷 ↔ (𝑋:𝑃–1-1→𝐸 ∧ 𝑌:𝐸–1-1-onto→𝐷))) | ||
| Theorem | f1cof1blem 47059 | Lemma for f1cof1b 47062 and focofob 47065. (Contributed by AV, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) & ⊢ 𝑃 = (◡𝐹 “ 𝐶) & ⊢ 𝑋 = (𝐹 ↾ 𝑃) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) & ⊢ 𝑌 = (𝐺 ↾ 𝐸) & ⊢ (𝜑 → ran 𝐹 = 𝐶) ⇒ ⊢ (𝜑 → ((𝑃 = 𝐴 ∧ 𝐸 = 𝐶) ∧ (𝑋 = 𝐹 ∧ 𝑌 = 𝐺))) | ||
| Theorem | 3f1oss1 47060 | The composition of three bijections as bijection from the image of the domain onto the image of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.) |
| ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐸)) → ((𝐻 ∘ 𝐺) ∘ ◡𝐹):(𝐹 “ 𝐶)–1-1-onto→(𝐻 “ 𝐷)) | ||
| Theorem | 3f1oss2 47061 | The composition of three bijections as bijection from the image of the converse of the domain onto the image of the converse of the range of the middle bijection. (Contributed by AV, 15-Aug-2025.) |
| ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐺:𝐶–1-1-onto→𝐷 ∧ 𝐻:𝐸–1-1-onto→𝐼) ∧ (𝐶 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐼)) → ((◡𝐻 ∘ 𝐺) ∘ 𝐹):(◡𝐹 “ 𝐶)–1-1-onto→(◡𝐻 “ 𝐷)) | ||
| Theorem | f1cof1b 47062 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is injective iff 𝐹 and 𝐺 are both injective. (Contributed by GL and AV, 19-Sep-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1→𝐷 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐶–1-1→𝐷))) | ||
| Theorem | funfocofob 47063 | If the domain of a function 𝐺 is a subset of the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴⟶𝐵 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐺 ∘ 𝐹):(◡𝐹 “ 𝐴)–onto→𝐵 ↔ 𝐺:𝐴–onto→𝐵)) | ||
| Theorem | fnfocofob 47064 | If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 is surjective. (Contributed by GL and AV, 29-Sep-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐵) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐶 ↔ 𝐺:𝐵–onto→𝐶)) | ||
| Theorem | focofob 47065 | If the domain of a function 𝐺 equals the range of a function 𝐹, then the composition (𝐺 ∘ 𝐹) is surjective iff 𝐺 and 𝐹 as function to the domain of 𝐺 are both surjective. Symmetric version of fnfocofob 47064 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 29-Sep-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–onto→𝐷 ↔ (𝐹:𝐴–onto→𝐶 ∧ 𝐺:𝐶–onto→𝐷))) | ||
| Theorem | f1ocof1ob 47066 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. (Contributed by GL and AV, 7-Oct-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | ||
| Theorem | f1ocof1ob2 47067 | If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 47066 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1-onto→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | ||
| Syntax | caiota 47068 | Extend class notation with an alternative for Russell's definition of a description binder (inverted iota). |
| class (℩'𝑥𝜑) | ||
| Theorem | aiotajust 47069* | Soundness justification theorem for df-aiota 47070. (Contributed by AV, 24-Aug-2022.) |
| ⊢ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | ||
| Definition | df-aiota 47070* |
Alternate version of Russell's definition of a description binder, which
can be read as "the unique 𝑥 such that 𝜑", where 𝜑
ordinarily contains 𝑥 as a free variable. Our definition
is
meaningful only when there is exactly one 𝑥 such that 𝜑 is true
(see aiotaval 47080); otherwise, it is not a set (see aiotaexb 47074), or even
more concrete, it is the universe V (see aiotavb 47075). Since this
is an alternative for df-iota 6442, we call this symbol ℩'
alternate iota in the following.
The advantage of this definition is the clear distinguishability of the defined and undefined cases: the alternate iota over a wff is defined iff it is a set (see aiotaexb 47074). With the original definition, there is no corresponding theorem (∃!𝑥𝜑 ↔ (℩𝑥𝜑) ≠ ∅), because ∅ can be a valid unique set satisfying a wff (see, for example, iota0def 47023). Only the right to left implication would hold, see (negated) iotanul 6466. For defined cases, however, both definitions df-iota 6442 and df-aiota 47070 are equivalent, see reuaiotaiota 47073. (Proposed by BJ, 13-Aug-2022.) (Contributed by AV, 24-Aug-2022.) |
| ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | ||
| Theorem | dfaiota2 47071* | Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in [Quine] p. 56. (Contributed by AV, 24-Aug-2022.) |
| ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | ||
| Theorem | reuabaiotaiota 47072* | The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique satisfying value of {𝑥 ∣ 𝜑} = {𝑦}. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
| Theorem | reuaiotaiota 47073 | The iota and the alternate iota over a wff 𝜑 are equal iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
| Theorem | aiotaexb 47074 | The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) | ||
| Theorem | aiotavb 47075 | The alternate iota over a wff 𝜑 is the universe iff there is no unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) | ||
| Theorem | aiotaint 47076 | This is to df-aiota 47070 what iotauni 6463 is to df-iota 6442 (it uses intersection like df-aiota 47070, similar to iotauni 6463 using union like df-iota 6442; we could also prove an analogous result using union here too, in the same way that we have iotaint 6464). (Contributed by BJ, 31-Aug-2024.) |
| ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | ||
| Theorem | dfaiota3 47077 | Alternate definition of ℩': this is to df-aiota 47070 what dfiota4 6478 is to df-iota 6442. operation using the if operator. It is simpler than df-aiota 47070 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
| ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) | ||
| Theorem | iotan0aiotaex 47078 | If the iota over a wff 𝜑 is not empty, the alternate iota over 𝜑 is a set. (Contributed by AV, 25-Aug-2022.) |
| ⊢ ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V) | ||
| Theorem | aiotaexaiotaiota 47079 | The alternate iota over a wff 𝜑 is a set iff the iota and the alternate iota over 𝜑 are equal. (Contributed by AV, 25-Aug-2022.) |
| ⊢ ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | ||
| Theorem | aiotaval 47080* | Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦) | ||
| Theorem | aiota0def 47081* | Example for a defined alternate iota being the empty set, i.e., ∀𝑦𝑥 ⊆ 𝑦 is a wff satisfied by a unique value 𝑥, namely 𝑥 = ∅ (the empty set is the one and only set which is a subset of every set). This corresponds to iota0def 47023. (Contributed by AV, 25-Aug-2022.) |
| ⊢ (℩'𝑥∀𝑦 𝑥 ⊆ 𝑦) = ∅ | ||
| Theorem | aiota0ndef 47082* | Example for an undefined alternate iota being no set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef 47024, where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022.) |
| ⊢ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V | ||
| Theorem | r19.32 47083 | Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, analogous to r19.32v 3162. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
| ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | rexsb 47084* | An equivalent expression for restricted existence, analogous to exsb 2357. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | rexrsb 47085* | An equivalent expression for restricted existence, analogous to exsb 2357. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑥 = 𝑦 → 𝜑)) | ||
| Theorem | 2rexsb 47086* | An equivalent expression for double restricted existence, analogous to rexsb 47084. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | ||
| Theorem | 2rexrsb 47087* | An equivalent expression for double restricted existence, analogous to 2exsb 2358. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | ||
| Theorem | cbvral2 47088* | Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvral2v 3333. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑤𝜒 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrex2 47089* | Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvrex2v 3334. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑤𝜒 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
| Theorem | ralndv1 47090 | Example for a theorem about a restricted universal quantification in which the restricting class depends on (actually is) the bound variable: All sets containing themselves contain the universal class. (Contributed by AV, 24-Jun-2023.) |
| ⊢ ∀𝑥 ∈ 𝑥 V ∈ 𝑥 | ||
| Theorem | ralndv2 47091 | Second example for a theorem about a restricted universal quantification in which the restricting class depends on the bound variable: all subsets of a set are sets. (Contributed by AV, 24-Jun-2023.) |
| ⊢ ∀𝑥 ∈ 𝒫 𝑥𝑥 ∈ V | ||
| Theorem | reuf1odnf 47092* | There is exactly one element in each of two isomorphic sets. Variant of reuf1od 47093 with no distinct variable condition for 𝜒. (Contributed by AV, 19-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) & ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) & ⊢ Ⅎ𝑥𝜒 ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | reuf1od 47093* | There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023.) |
| ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐵) & ⊢ ((𝜑 ∧ 𝑥 = (𝐹‘𝑦)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) | ||
| Theorem | euoreqb 47094* | There is a set which is equal to one of two other sets iff the other sets are equal. (Contributed by AV, 24-Jan-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∃!𝑥 ∈ 𝑉 (𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | 2reu3 47095* | Double restricted existential uniqueness, analogous to 2eu3 2647. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (∃*𝑥 ∈ 𝐴 𝜑 ∨ ∃*𝑦 ∈ 𝐵 𝜑) → ((∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃!𝑥 ∈ 𝐴 𝜑) ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑))) | ||
| Theorem | 2reu7 47096* | Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu7 2651. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | ||
| Theorem | 2reu8 47097* | Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu8 2652. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!𝑥 ∈ 𝐴∃!𝑦 ∈ 𝐵 using 2reu7 47096. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | ||
| Theorem | 2reu8i 47098* | Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, see also 2reu8 47097. The involved wffs depend on the setvar variables as follows: ph(x,y), ta(v,y), ch(x,w), th(v,w), et(x,b), ps(a,b), ze(a,w). (Contributed by AV, 1-Apr-2023.) |
| ⊢ (𝑥 = 𝑣 → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝑣 → (𝜒 ↔ 𝜃)) & ⊢ (𝑦 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑏 → (𝜑 ↔ 𝜂)) & ⊢ (𝑥 = 𝑎 → (𝜒 ↔ 𝜁)) & ⊢ (((𝜒 → 𝑦 = 𝑤) ∧ 𝜁) → 𝑦 = 𝑤) & ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜂 → (𝑏 = 𝑦 ∧ (𝜓 → 𝑎 = 𝑥))))) | ||
| Theorem | 2reuimp0 47099* | Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification. The involved wffs depend on the setvar variables as follows: ph(a,b), th(a,c), ch(d,b), ta(d,c), et(a,e), ps(a,f) (Contributed by AV, 13-Mar-2023.) |
| ⊢ (𝑏 = 𝑐 → (𝜑 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜒)) & ⊢ (𝑎 = 𝑑 → (𝜃 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜑 ↔ 𝜂)) & ⊢ (𝑐 = 𝑓 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (∃!𝑎 ∈ 𝑉 ∃!𝑏 ∈ 𝑉 𝜑 → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) | ||
| Theorem | 2reuimp 47100* | Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification if the class of the quantified elements is not empty. (Contributed by AV, 13-Mar-2023.) |
| ⊢ (𝑏 = 𝑐 → (𝜑 ↔ 𝜃)) & ⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜒)) & ⊢ (𝑎 = 𝑑 → (𝜃 ↔ 𝜏)) & ⊢ (𝑏 = 𝑒 → (𝜑 ↔ 𝜂)) & ⊢ (𝑐 = 𝑓 → (𝜃 ↔ 𝜓)) ⇒ ⊢ ((𝑉 ≠ ∅ ∧ ∃!𝑎 ∈ 𝑉 ∃!𝑏 ∈ 𝑉 𝜑) → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |