Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmatALTval Structured version   Visualization version   GIF version

Theorem dmatALTval 48389
Description: The algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatALTval.a 𝐴 = (𝑁 Mat 𝑅)
dmatALTval.b 𝐵 = (Base‘𝐴)
dmatALTval.0 0 = (0g𝑅)
dmatALTval.d 𝐷 = (𝑁 DMatALT 𝑅)
Assertion
Ref Expression
dmatALTval ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑚   𝑅,𝑖,𝑗,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑚)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑚)   0 (𝑖,𝑗,𝑚)

Proof of Theorem dmatALTval
Dummy variables 𝑛 𝑟 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatALTval.d . 2 𝐷 = (𝑁 DMatALT 𝑅)
2 ovexd 7422 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) ∈ V)
3 id 22 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → 𝑎 = (𝑛 Mat 𝑟))
4 fveq2 6858 . . . . . . . 8 (𝑎 = (𝑛 Mat 𝑟) → (Base‘𝑎) = (Base‘(𝑛 Mat 𝑟)))
54rabeqdv 3421 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))})
63, 5oveq12d 7405 . . . . . 6 (𝑎 = (𝑛 Mat 𝑟) → (𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
76adantl 481 . . . . 5 (((𝑛 = 𝑁𝑟 = 𝑅) ∧ 𝑎 = (𝑛 Mat 𝑟)) → (𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
82, 7csbied 3898 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
9 oveq12 7396 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
10 dmatALTval.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
119, 10eqtr4di 2782 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
1211fveq2d 6862 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
13 dmatALTval.b . . . . . . 7 𝐵 = (Base‘𝐴)
1412, 13eqtr4di 2782 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
15 simpl 482 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
16 fveq2 6858 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
17 dmatALTval.0 . . . . . . . . . . . 12 0 = (0g𝑅)
1816, 17eqtr4di 2782 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1918adantl 481 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (0g𝑟) = 0 )
2019eqeq2d 2740 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑚𝑗) = (0g𝑟) ↔ (𝑖𝑚𝑗) = 0 ))
2120imbi2d 340 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2215, 21raleqbidv 3319 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2315, 22raleqbidv 3319 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2414, 23rabeqbidv 3424 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
2511, 24oveq12d 7405 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
268, 25eqtrd 2764 . . 3 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
27 df-dmatalt 48387 . . 3 DMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
28 ovex 7420 . . 3 (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}) ∈ V
2926, 27, 28ovmpoa 7544 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 DMatALT 𝑅) = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
301, 29eqtrid 2776 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447  csb 3862  cfv 6511  (class class class)co 7387  Fincfn 8918  Basecbs 17179  s cress 17200  0gc0g 17402   Mat cmat 22294   DMatALT cdmatalt 48385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-dmatalt 48387
This theorem is referenced by:  dmatALTbas  48390
  Copyright terms: Public domain W3C validator