Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmatALTval Structured version   Visualization version   GIF version

Theorem dmatALTval 44462
Description: The algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅. (Contributed by AV, 8-Dec-2019.)
Hypotheses
Ref Expression
dmatALTval.a 𝐴 = (𝑁 Mat 𝑅)
dmatALTval.b 𝐵 = (Base‘𝐴)
dmatALTval.0 0 = (0g𝑅)
dmatALTval.d 𝐷 = (𝑁 DMatALT 𝑅)
Assertion
Ref Expression
dmatALTval ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
Distinct variable groups:   𝐵,𝑚   𝑖,𝑁,𝑗,𝑚   𝑅,𝑖,𝑗,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑚)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑚)   0 (𝑖,𝑗,𝑚)

Proof of Theorem dmatALTval
Dummy variables 𝑛 𝑟 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatALTval.d . 2 𝐷 = (𝑁 DMatALT 𝑅)
2 ovexd 7193 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) ∈ V)
3 id 22 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → 𝑎 = (𝑛 Mat 𝑟))
4 fveq2 6672 . . . . . . . 8 (𝑎 = (𝑛 Mat 𝑟) → (Base‘𝑎) = (Base‘(𝑛 Mat 𝑟)))
54rabeqdv 3486 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))})
63, 5oveq12d 7176 . . . . . 6 (𝑎 = (𝑛 Mat 𝑟) → (𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
76adantl 484 . . . . 5 (((𝑛 = 𝑁𝑟 = 𝑅) ∧ 𝑎 = (𝑛 Mat 𝑟)) → (𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
82, 7csbied 3921 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
9 oveq12 7167 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
10 dmatALTval.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
119, 10syl6eqr 2876 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
1211fveq2d 6676 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
13 dmatALTval.b . . . . . . 7 𝐵 = (Base‘𝐴)
1412, 13syl6eqr 2876 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
15 simpl 485 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
16 fveq2 6672 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
17 dmatALTval.0 . . . . . . . . . . . 12 0 = (0g𝑅)
1816, 17syl6eqr 2876 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1918adantl 484 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (0g𝑟) = 0 )
2019eqeq2d 2834 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑚𝑗) = (0g𝑟) ↔ (𝑖𝑚𝑗) = 0 ))
2120imbi2d 343 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2215, 21raleqbidv 3403 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2315, 22raleqbidv 3403 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟)) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )))
2414, 23rabeqbidv 3487 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))} = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )})
2511, 24oveq12d 7176 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
268, 25eqtrd 2858 . . 3 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}) = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
27 df-dmatalt 44460 . . 3 DMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
28 ovex 7191 . . 3 (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}) ∈ V
2926, 27, 28ovmpoa 7307 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 DMatALT 𝑅) = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
301, 29syl5eq 2870 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴s {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑚𝑗) = 0 )}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  Vcvv 3496  csb 3885  cfv 6357  (class class class)co 7158  Fincfn 8511  Basecbs 16485  s cress 16486  0gc0g 16715   Mat cmat 21018   DMatALT cdmatalt 44458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-dmatalt 44460
This theorem is referenced by:  dmatALTbas  44463
  Copyright terms: Public domain W3C validator