Step | Hyp | Ref
| Expression |
1 | | dmatALTval.d |
. 2
⊢ 𝐷 = (𝑁 DMatALT 𝑅) |
2 | | ovexd 7310 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) ∈ V) |
3 | | id 22 |
. . . . . . 7
⊢ (𝑎 = (𝑛 Mat 𝑟) → 𝑎 = (𝑛 Mat 𝑟)) |
4 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑎 = (𝑛 Mat 𝑟) → (Base‘𝑎) = (Base‘(𝑛 Mat 𝑟))) |
5 | 4 | rabeqdv 3419 |
. . . . . . 7
⊢ (𝑎 = (𝑛 Mat 𝑟) → {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
6 | 3, 5 | oveq12d 7293 |
. . . . . 6
⊢ (𝑎 = (𝑛 Mat 𝑟) → (𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
7 | 6 | adantl 482 |
. . . . 5
⊢ (((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) ∧ 𝑎 = (𝑛 Mat 𝑟)) → (𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
8 | 2, 7 | csbied 3870 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
9 | | oveq12 7284 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) |
10 | | dmatALTval.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
11 | 9, 10 | eqtr4di 2796 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴) |
12 | 11 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴)) |
13 | | dmatALTval.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
14 | 12, 13 | eqtr4di 2796 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵) |
15 | | simpl 483 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
16 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
17 | | dmatALTval.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑅) |
18 | 16, 17 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
19 | 18 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (0g‘𝑟) = 0 ) |
20 | 19 | eqeq2d 2749 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑖𝑚𝑗) = (0g‘𝑟) ↔ (𝑖𝑚𝑗) = 0 )) |
21 | 20 | imbi2d 341 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
22 | 15, 21 | raleqbidv 3336 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
23 | 15, 22 | raleqbidv 3336 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟)) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 ))) |
24 | 14, 23 | rabeqbidv 3420 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))} = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) |
25 | 11, 24 | oveq12d 7293 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((𝑛 Mat 𝑟) ↾s {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
26 | 8, 25 | eqtrd 2778 |
. . 3
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
27 | | df-dmatalt 45739 |
. . 3
⊢ DMatALT
= (𝑛 ∈ Fin, 𝑟 ∈ V ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
28 | | ovex 7308 |
. . 3
⊢ (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) ∈
V |
29 | 26, 27, 28 | ovmpoa 7428 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑁 DMatALT 𝑅) = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |
30 | 1, 29 | eqtrid 2790 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) |