Detailed syntax breakdown of Definition df-scmatalt
Step | Hyp | Ref
| Expression |
1 | | cscmatalt 45738 |
. 2
class
ScMatALT |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cfn 8733 |
. . 3
class
Fin |
5 | | cvv 3432 |
. . 3
class
V |
6 | | va |
. . . 4
setvar 𝑎 |
7 | 2 | cv 1538 |
. . . . 5
class 𝑛 |
8 | 3 | cv 1538 |
. . . . 5
class 𝑟 |
9 | | cmat 21554 |
. . . . 5
class
Mat |
10 | 7, 8, 9 | co 7275 |
. . . 4
class (𝑛 Mat 𝑟) |
11 | 6 | cv 1538 |
. . . . 5
class 𝑎 |
12 | | vi |
. . . . . . . . . . . 12
setvar 𝑖 |
13 | 12 | cv 1538 |
. . . . . . . . . . 11
class 𝑖 |
14 | | vj |
. . . . . . . . . . . 12
setvar 𝑗 |
15 | 14 | cv 1538 |
. . . . . . . . . . 11
class 𝑗 |
16 | | vm |
. . . . . . . . . . . 12
setvar 𝑚 |
17 | 16 | cv 1538 |
. . . . . . . . . . 11
class 𝑚 |
18 | 13, 15, 17 | co 7275 |
. . . . . . . . . 10
class (𝑖𝑚𝑗) |
19 | 12, 14 | weq 1966 |
. . . . . . . . . . 11
wff 𝑖 = 𝑗 |
20 | | vc |
. . . . . . . . . . . 12
setvar 𝑐 |
21 | 20 | cv 1538 |
. . . . . . . . . . 11
class 𝑐 |
22 | | c0g 17150 |
. . . . . . . . . . . 12
class
0g |
23 | 8, 22 | cfv 6433 |
. . . . . . . . . . 11
class
(0g‘𝑟) |
24 | 19, 21, 23 | cif 4459 |
. . . . . . . . . 10
class if(𝑖 = 𝑗, 𝑐, (0g‘𝑟)) |
25 | 18, 24 | wceq 1539 |
. . . . . . . . 9
wff (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟)) |
26 | 25, 14, 7 | wral 3064 |
. . . . . . . 8
wff
∀𝑗 ∈
𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟)) |
27 | 26, 12, 7 | wral 3064 |
. . . . . . 7
wff
∀𝑖 ∈
𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟)) |
28 | | cbs 16912 |
. . . . . . . 8
class
Base |
29 | 8, 28 | cfv 6433 |
. . . . . . 7
class
(Base‘𝑟) |
30 | 27, 20, 29 | wrex 3065 |
. . . . . 6
wff
∃𝑐 ∈
(Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟)) |
31 | 11, 28 | cfv 6433 |
. . . . . 6
class
(Base‘𝑎) |
32 | 30, 16, 31 | crab 3068 |
. . . . 5
class {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))} |
33 | | cress 16941 |
. . . . 5
class
↾s |
34 | 11, 32, 33 | co 7275 |
. . . 4
class (𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))}) |
35 | 6, 10, 34 | csb 3832 |
. . 3
class
⦋(𝑛
Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))}) |
36 | 2, 3, 4, 5, 35 | cmpo 7277 |
. 2
class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))})) |
37 | 1, 36 | wceq 1539 |
1
wff ScMatALT =
(𝑛 ∈ Fin, 𝑟 ∈ V ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))})) |