Detailed syntax breakdown of Definition df-dsmm
| Step | Hyp | Ref
| Expression |
| 1 | | cdsmm 21751 |
. 2
class
⊕m |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑠 |
| 6 | 3 | cv 1539 |
. . . . 5
class 𝑟 |
| 7 | | cprds 17490 |
. . . . 5
class Xs |
| 8 | 5, 6, 7 | co 7431 |
. . . 4
class (𝑠Xs𝑟) |
| 9 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 10 | 9 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 11 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 12 | 11 | cv 1539 |
. . . . . . . . 9
class 𝑓 |
| 13 | 10, 12 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑥) |
| 14 | 10, 6 | cfv 6561 |
. . . . . . . . 9
class (𝑟‘𝑥) |
| 15 | | c0g 17484 |
. . . . . . . . 9
class
0g |
| 16 | 14, 15 | cfv 6561 |
. . . . . . . 8
class
(0g‘(𝑟‘𝑥)) |
| 17 | 13, 16 | wne 2940 |
. . . . . . 7
wff (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥)) |
| 18 | 6 | cdm 5685 |
. . . . . . 7
class dom 𝑟 |
| 19 | 17, 9, 18 | crab 3436 |
. . . . . 6
class {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} |
| 20 | | cfn 8985 |
. . . . . 6
class
Fin |
| 21 | 19, 20 | wcel 2108 |
. . . . 5
wff {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin |
| 22 | | cbs 17247 |
. . . . . . 7
class
Base |
| 23 | 14, 22 | cfv 6561 |
. . . . . 6
class
(Base‘(𝑟‘𝑥)) |
| 24 | 9, 18, 23 | cixp 8937 |
. . . . 5
class X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) |
| 25 | 21, 11, 24 | crab 3436 |
. . . 4
class {𝑓 ∈ X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} |
| 26 | | cress 17274 |
. . . 4
class
↾s |
| 27 | 8, 25, 26 | co 7431 |
. . 3
class ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin}) |
| 28 | 2, 3, 4, 4, 27 | cmpo 7433 |
. 2
class (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) |
| 29 | 1, 28 | wceq 1540 |
1
wff
⊕m = (𝑠
∈ V, 𝑟 ∈ V
↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) |