Detailed syntax breakdown of Definition df-dsmm
Step | Hyp | Ref
| Expression |
1 | | cdsmm 20947 |
. 2
class
⊕m |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vr |
. . 3
setvar 𝑟 |
4 | | cvv 3433 |
. . 3
class
V |
5 | 2 | cv 1538 |
. . . . 5
class 𝑠 |
6 | 3 | cv 1538 |
. . . . 5
class 𝑟 |
7 | | cprds 17165 |
. . . . 5
class Xs |
8 | 5, 6, 7 | co 7284 |
. . . 4
class (𝑠Xs𝑟) |
9 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
10 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑥 |
11 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
12 | 11 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
13 | 10, 12 | cfv 6437 |
. . . . . . . 8
class (𝑓‘𝑥) |
14 | 10, 6 | cfv 6437 |
. . . . . . . . 9
class (𝑟‘𝑥) |
15 | | c0g 17159 |
. . . . . . . . 9
class
0g |
16 | 14, 15 | cfv 6437 |
. . . . . . . 8
class
(0g‘(𝑟‘𝑥)) |
17 | 13, 16 | wne 2944 |
. . . . . . 7
wff (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥)) |
18 | 6 | cdm 5590 |
. . . . . . 7
class dom 𝑟 |
19 | 17, 9, 18 | crab 3069 |
. . . . . 6
class {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} |
20 | | cfn 8742 |
. . . . . 6
class
Fin |
21 | 19, 20 | wcel 2107 |
. . . . 5
wff {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin |
22 | | cbs 16921 |
. . . . . . 7
class
Base |
23 | 14, 22 | cfv 6437 |
. . . . . 6
class
(Base‘(𝑟‘𝑥)) |
24 | 9, 18, 23 | cixp 8694 |
. . . . 5
class X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) |
25 | 21, 11, 24 | crab 3069 |
. . . 4
class {𝑓 ∈ X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} |
26 | | cress 16950 |
. . . 4
class
↾s |
27 | 8, 25, 26 | co 7284 |
. . 3
class ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin}) |
28 | 2, 3, 4, 4, 27 | cmpo 7286 |
. 2
class (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) |
29 | 1, 28 | wceq 1539 |
1
wff
⊕m = (𝑠
∈ V, 𝑟 ∈ V
↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) |