MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmdsmm Structured version   Visualization version   GIF version

Theorem reldmdsmm 21288
Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Assertion
Ref Expression
reldmdsmm Rel dom ⊕m

Proof of Theorem reldmdsmm
Dummy variables 𝑠 𝑟 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dsmm 21287 . 2 m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
21reldmmpo 7543 1 Rel dom ⊕m
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wne 2941  {crab 3433  Vcvv 3475  dom cdm 5677  Rel wrel 5682  cfv 6544  (class class class)co 7409  Xcixp 8891  Fincfn 8939  Basecbs 17144  s cress 17173  0gc0g 17385  Xscprds 17391  m cdsmm 21286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-dm 5687  df-oprab 7413  df-mpo 7414  df-dsmm 21287
This theorem is referenced by:  dsmmval  21289  dsmmval2  21291
  Copyright terms: Public domain W3C validator