| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmdsmm | Structured version Visualization version GIF version | ||
| Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| reldmdsmm | ⊢ Rel dom ⊕m |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dsmm 21641 | . 2 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
| 2 | 1 | reldmmpo 7523 | 1 ⊢ Rel dom ⊕m |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 {crab 3405 Vcvv 3447 dom cdm 5638 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 Xcixp 8870 Fincfn 8918 Basecbs 17179 ↾s cress 17200 0gc0g 17402 Xscprds 17408 ⊕m cdsmm 21640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 df-dsmm 21641 |
| This theorem is referenced by: dsmmval 21643 dsmmval2 21645 |
| Copyright terms: Public domain | W3C validator |