Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmdsmm | Structured version Visualization version GIF version |
Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
Ref | Expression |
---|---|
reldmdsmm | ⊢ Rel dom ⊕m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dsmm 21019 | . 2 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
2 | 1 | reldmmpo 7449 | 1 ⊢ Rel dom ⊕m |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ≠ wne 2940 {crab 3403 Vcvv 3440 dom cdm 5607 Rel wrel 5612 ‘cfv 6465 (class class class)co 7316 Xcixp 8734 Fincfn 8782 Basecbs 16986 ↾s cress 17015 0gc0g 17224 Xscprds 17230 ⊕m cdsmm 21018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-xp 5613 df-rel 5614 df-dm 5617 df-oprab 7320 df-mpo 7321 df-dsmm 21019 |
This theorem is referenced by: dsmmval 21021 dsmmval2 21023 |
Copyright terms: Public domain | W3C validator |