![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmdsmm | Structured version Visualization version GIF version |
Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
Ref | Expression |
---|---|
reldmdsmm | ⊢ Rel dom ⊕m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dsmm 21779 | . 2 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
2 | 1 | reldmmpo 7574 | 1 ⊢ Rel dom ⊕m |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2940 {crab 3436 Vcvv 3481 dom cdm 5693 Rel wrel 5698 ‘cfv 6569 (class class class)co 7438 Xcixp 8945 Fincfn 8993 Basecbs 17254 ↾s cress 17283 0gc0g 17495 Xscprds 17501 ⊕m cdsmm 21778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-dm 5703 df-oprab 7442 df-mpo 7443 df-dsmm 21779 |
This theorem is referenced by: dsmmval 21781 dsmmval2 21783 |
Copyright terms: Public domain | W3C validator |