MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmdsmm Structured version   Visualization version   GIF version

Theorem reldmdsmm 21778
Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Assertion
Ref Expression
reldmdsmm Rel dom ⊕m

Proof of Theorem reldmdsmm
Dummy variables 𝑠 𝑟 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dsmm 21777 . 2 m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
21reldmmpo 7586 1 Rel dom ⊕m
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  dom cdm 5700  Rel wrel 5705  cfv 6575  (class class class)co 7450  Xcixp 8957  Fincfn 9005  Basecbs 17260  s cress 17289  0gc0g 17501  Xscprds 17507  m cdsmm 21776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-oprab 7454  df-mpo 7455  df-dsmm 21777
This theorem is referenced by:  dsmmval  21779  dsmmval2  21781
  Copyright terms: Public domain W3C validator