Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmdsmm | Structured version Visualization version GIF version |
Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
Ref | Expression |
---|---|
reldmdsmm | ⊢ Rel dom ⊕m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dsmm 20849 | . 2 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
2 | 1 | reldmmpo 7386 | 1 ⊢ Rel dom ⊕m |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 dom cdm 5580 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 Xcixp 8643 Fincfn 8691 Basecbs 16840 ↾s cress 16867 0gc0g 17067 Xscprds 17073 ⊕m cdsmm 20848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-oprab 7259 df-mpo 7260 df-dsmm 20849 |
This theorem is referenced by: dsmmval 20851 dsmmval2 20853 |
Copyright terms: Public domain | W3C validator |