![]() |
Metamath
Proof Explorer Theorem List (p. 216 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30784) |
![]() (30785-32307) |
![]() (32308-48350) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | znunit 21501 | The units of β€/nβ€ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.) |
β’ π = (β€/nβ€βπ) & β’ π = (Unitβπ) & β’ πΏ = (β€RHomβπ) β β’ ((π β β0 β§ π΄ β β€) β ((πΏβπ΄) β π β (π΄ gcd π) = 1)) | ||
Theorem | znunithash 21502 | The size of the unit group of β€/nβ€. (Contributed by Mario Carneiro, 19-Apr-2016.) |
β’ π = (β€/nβ€βπ) & β’ π = (Unitβπ) β β’ (π β β β (β―βπ) = (Οβπ)) | ||
Theorem | znrrg 21503 | The regular elements of β€/nβ€ are exactly the units. (This theorem fails for π = 0, where all nonzero integers are regular, but only Β±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.) |
β’ π = (β€/nβ€βπ) & β’ π = (Unitβπ) & β’ πΈ = (RLRegβπ) β β’ (π β β β πΈ = π) | ||
Theorem | cygznlem1 21504* | Lemma for cygzn 21508. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ π = if(π΅ β Fin, (β―βπ΅), 0) & β’ π = (β€/nβ€βπ) & β’ Β· = (.gβπΊ) & β’ πΏ = (β€RHomβπ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} & β’ (π β πΊ β CycGrp) & β’ (π β π β πΈ) β β’ ((π β§ (πΎ β β€ β§ π β β€)) β ((πΏβπΎ) = (πΏβπ) β (πΎ Β· π) = (π Β· π))) | ||
Theorem | cygznlem2a 21505* | Lemma for cygzn 21508. (Contributed by Mario Carneiro, 23-Dec-2016.) |
β’ π΅ = (BaseβπΊ) & β’ π = if(π΅ β Fin, (β―βπ΅), 0) & β’ π = (β€/nβ€βπ) & β’ Β· = (.gβπΊ) & β’ πΏ = (β€RHomβπ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} & β’ (π β πΊ β CycGrp) & β’ (π β π β πΈ) & β’ πΉ = ran (π β β€ β¦ β¨(πΏβπ), (π Β· π)β©) β β’ (π β πΉ:(Baseβπ)βΆπ΅) | ||
Theorem | cygznlem2 21506* | Lemma for cygzn 21508. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by Mario Carneiro, 23-Dec-2016.) |
β’ π΅ = (BaseβπΊ) & β’ π = if(π΅ β Fin, (β―βπ΅), 0) & β’ π = (β€/nβ€βπ) & β’ Β· = (.gβπΊ) & β’ πΏ = (β€RHomβπ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} & β’ (π β πΊ β CycGrp) & β’ (π β π β πΈ) & β’ πΉ = ran (π β β€ β¦ β¨(πΏβπ), (π Β· π)β©) β β’ ((π β§ π β β€) β (πΉβ(πΏβπ)) = (π Β· π)) | ||
Theorem | cygznlem3 21507* | A cyclic group with π elements is isomorphic to β€ / πβ€. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ π = if(π΅ β Fin, (β―βπ΅), 0) & β’ π = (β€/nβ€βπ) & β’ Β· = (.gβπΊ) & β’ πΏ = (β€RHomβπ) & β’ πΈ = {π₯ β π΅ β£ ran (π β β€ β¦ (π Β· π₯)) = π΅} & β’ (π β πΊ β CycGrp) & β’ (π β π β πΈ) & β’ πΉ = ran (π β β€ β¦ β¨(πΏβπ), (π Β· π)β©) β β’ (π β πΊ βπ π) | ||
Theorem | cygzn 21508 | A cyclic group with π elements is isomorphic to β€ / πβ€, and an infinite cyclic group is isomorphic to β€ / 0β€ β β€. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ π = if(π΅ β Fin, (β―βπ΅), 0) & β’ π = (β€/nβ€βπ) β β’ (πΊ β CycGrp β πΊ βπ π) | ||
Theorem | cygth 21509* | The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups β€ / πβ€, for 0 β€ π (where π = 0 is the infinite cyclic group β€), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ (πΊ β CycGrp β βπ β β0 πΊ βπ (β€/nβ€βπ)) | ||
Theorem | cyggic 21510 | Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.) |
β’ π΅ = (BaseβπΊ) & β’ πΆ = (Baseβπ») β β’ ((πΊ β CycGrp β§ π» β CycGrp) β (πΊ βπ π» β π΅ β πΆ)) | ||
Theorem | frgpcyg 21511 | A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.) |
β’ πΊ = (freeGrpβπΌ) β β’ (πΌ βΌ 1o β πΊ β CycGrp) | ||
Theorem | freshmansdream 21512 | For a prime number π, if π and π are members of a commutative ring π of characteristic π, then ((π + π)βπ) = ((πβπ) + (πβπ)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.) |
β’ π΅ = (Baseβπ ) & β’ + = (+gβπ ) & β’ β = (.gβ(mulGrpβπ )) & β’ π = (chrβπ ) & β’ (π β π β CRing) & β’ (π β π β β) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β (π + π)) = ((π β π) + (π β π))) | ||
Theorem | cnmsgnsubg 21513 | The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
β’ π = ((mulGrpββfld) βΎs (β β {0})) β β’ {1, -1} β (SubGrpβπ) | ||
Theorem | cnmsgnbas 21514 | The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
β’ π = ((mulGrpββfld) βΎs {1, -1}) β β’ {1, -1} = (Baseβπ) | ||
Theorem | cnmsgngrp 21515 | The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
β’ π = ((mulGrpββfld) βΎs {1, -1}) β β’ π β Grp | ||
Theorem | psgnghm 21516 | The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
β’ π = (SymGrpβπ·) & β’ π = (pmSgnβπ·) & β’ πΉ = (π βΎs dom π) & β’ π = ((mulGrpββfld) βΎs {1, -1}) β β’ (π· β π β π β (πΉ GrpHom π)) | ||
Theorem | psgnghm2 21517 | The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
β’ π = (SymGrpβπ·) & β’ π = (pmSgnβπ·) & β’ π = ((mulGrpββfld) βΎs {1, -1}) β β’ (π· β Fin β π β (π GrpHom π)) | ||
Theorem | psgninv 21518 | The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (pmSgnβπ·) & β’ π = (Baseβπ) β β’ ((π· β Fin β§ πΉ β π) β (πββ‘πΉ) = (πβπΉ)) | ||
Theorem | psgnco 21519 | Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (pmSgnβπ·) & β’ π = (Baseβπ) β β’ ((π· β Fin β§ πΉ β π β§ πΊ β π) β (πβ(πΉ β πΊ)) = ((πβπΉ) Β· (πβπΊ))) | ||
Theorem | zrhpsgnmhm 21520 | Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
β’ ((π β Ring β§ π΄ β Fin) β ((β€RHomβπ ) β (pmSgnβπ΄)) β ((SymGrpβπ΄) MndHom (mulGrpβπ ))) | ||
Theorem | zrhpsgninv 21521 | The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = (β€RHomβπ ) & β’ π = (pmSgnβπ) β β’ ((π β Ring β§ π β Fin β§ πΉ β π) β ((π β π)ββ‘πΉ) = ((π β π)βπΉ)) | ||
Theorem | evpmss 21522 | Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (Baseβπ) β β’ (pmEvenβπ·) β π | ||
Theorem | psgnevpmb 21523 | A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (Baseβπ) & β’ π = (pmSgnβπ·) β β’ (π· β Fin β (πΉ β (pmEvenβπ·) β (πΉ β π β§ (πβπΉ) = 1))) | ||
Theorem | psgnodpm 21524 | A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (Baseβπ) & β’ π = (pmSgnβπ·) β β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β (πβπΉ) = -1) | ||
Theorem | psgnevpm 21525 | A permutation which is even has sign 1. (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (Baseβπ) & β’ π = (pmSgnβπ·) β β’ ((π· β Fin β§ πΉ β (pmEvenβπ·)) β (πβπΉ) = 1) | ||
Theorem | psgnodpmr 21526 | If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (Baseβπ) & β’ π = (pmSgnβπ·) β β’ ((π· β Fin β§ πΉ β π β§ (πβπΉ) = -1) β πΉ β (π β (pmEvenβπ·))) | ||
Theorem | zrhpsgnevpm 21527 | The sign of an even permutation embedded into a ring is the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
β’ π = (β€RHomβπ ) & β’ π = (pmSgnβπ) & β’ 1 = (1rβπ ) β β’ ((π β Ring β§ π β Fin β§ πΉ β (pmEvenβπ)) β ((π β π)βπΉ) = 1 ) | ||
Theorem | zrhpsgnodpm 21528 | The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
β’ π = (β€RHomβπ ) & β’ π = (pmSgnβπ) & β’ 1 = (1rβπ ) & β’ π = (Baseβ(SymGrpβπ)) & β’ πΌ = (invgβπ ) β β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β ((π β π)βπΉ) = (πΌβ 1 )) | ||
Theorem | cofipsgn 21529 | Composition of any class π and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = (pmSgnβπ) β β’ ((π β Fin β§ π β π) β ((π β π)βπ) = (πβ(πβπ))) | ||
Theorem | zrhpsgnelbas 21530 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = (pmSgnβπ) & β’ π = (β€RHomβπ ) β β’ ((π β Ring β§ π β Fin β§ π β π) β (πβ(πβπ)) β (Baseβπ )) | ||
Theorem | zrhcopsgnelbas 21531 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) (Proof shortened by AV, 3-Jul-2022.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = (pmSgnβπ) & β’ π = (β€RHomβπ ) β β’ ((π β Ring β§ π β Fin β§ π β π) β ((π β π)βπ) β (Baseβπ )) | ||
Theorem | evpmodpmf1o 21532* | The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (Baseβπ) β β’ ((π· β Fin β§ πΉ β (π β (pmEvenβπ·))) β (π β (pmEvenβπ·) β¦ (πΉ(+gβπ)π)):(pmEvenβπ·)β1-1-ontoβ(π β (pmEvenβπ·))) | ||
Theorem | pmtrodpm 21533 | A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.) |
β’ π = (SymGrpβπ·) & β’ π = (Baseβπ) & β’ π = ran (pmTrspβπ·) β β’ ((π· β Fin β§ πΉ β π) β πΉ β (π β (pmEvenβπ·))) | ||
Theorem | psgnfix1 21534* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = ran (pmTrspβ(π β {πΎ})) & β’ π = (SymGrpβ(π β {πΎ})) β β’ ((π β Fin β§ πΎ β π) β (π β {π β π β£ (πβπΎ) = πΎ} β βπ€ β Word π(π βΎ (π β {πΎ})) = (π Ξ£g π€))) | ||
Theorem | psgnfix2 21535* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = ran (pmTrspβ(π β {πΎ})) & β’ π = (SymGrpβ(π β {πΎ})) & β’ π = (SymGrpβπ) & β’ π = ran (pmTrspβπ) β β’ ((π β Fin β§ πΎ β π) β (π β {π β π β£ (πβπΎ) = πΎ} β βπ€ β Word π π = (π Ξ£g π€))) | ||
Theorem | psgndiflemB 21536* | Lemma 1 for psgndif 21538. (Contributed by AV, 27-Jan-2019.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = ran (pmTrspβ(π β {πΎ})) & β’ π = (SymGrpβ(π β {πΎ})) & β’ π = (SymGrpβπ) & β’ π = ran (pmTrspβπ) β β’ (((π β Fin β§ πΎ β π) β§ π β {π β π β£ (πβπΎ) = πΎ}) β ((π β Word π β§ (π βΎ (π β {πΎ})) = (π Ξ£g π)) β ((π β Word π β§ (β―βπ) = (β―βπ) β§ βπ β (0..^(β―βπ))(((πβπ)βπΎ) = πΎ β§ βπ β (π β {πΎ})((πβπ)βπ) = ((πβπ)βπ))) β π = (π Ξ£g π)))) | ||
Theorem | psgndiflemA 21537* | Lemma 2 for psgndif 21538. (Contributed by AV, 31-Jan-2019.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = ran (pmTrspβ(π β {πΎ})) & β’ π = (SymGrpβ(π β {πΎ})) & β’ π = (SymGrpβπ) & β’ π = ran (pmTrspβπ) β β’ (((π β Fin β§ πΎ β π) β§ π β {π β π β£ (πβπΎ) = πΎ}) β ((π β Word π β§ (π βΎ (π β {πΎ})) = (π Ξ£g π) β§ π β Word π ) β (π = ((SymGrpβπ) Ξ£g π) β (-1β(β―βπ)) = (-1β(β―βπ))))) | ||
Theorem | psgndif 21538* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = (pmSgnβπ) & β’ π = (pmSgnβ(π β {πΎ})) β β’ ((π β Fin β§ πΎ β π) β (π β {π β π β£ (πβπΎ) = πΎ} β (πβ(π βΎ (π β {πΎ}))) = (πβπ))) | ||
Theorem | copsgndif 21539* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
β’ π = (Baseβ(SymGrpβπ)) & β’ π = (pmSgnβπ) & β’ π = (pmSgnβ(π β {πΎ})) β β’ ((π β Fin β§ πΎ β π) β (π β {π β π β£ (πβπΎ) = πΎ} β ((π β π)β(π βΎ (π β {πΎ}))) = ((π β π)βπ))) | ||
Syntax | crefld 21540 | Extend class notation with the field of real numbers. |
class βfld | ||
Definition | df-refld 21541 | The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
β’ βfld = (βfld βΎs β) | ||
Theorem | rebase 21542 | The base of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
β’ β = (Baseββfld) | ||
Theorem | remulg 21543 | The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
β’ ((π β β€ β§ π΄ β β) β (π(.gββfld)π΄) = (π Β· π΄)) | ||
Theorem | resubdrg 21544 | The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
β’ (β β (SubRingββfld) β§ βfld β DivRing) | ||
Theorem | resubgval 21545 | Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
β’ β = (-gββfld) β β’ ((π β β β§ π β β) β (π β π) = (π β π)) | ||
Theorem | replusg 21546 | The addition operation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
β’ + = (+gββfld) | ||
Theorem | remulr 21547 | The multiplication operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
β’ Β· = (.rββfld) | ||
Theorem | re0g 21548 | The zero element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
β’ 0 = (0gββfld) | ||
Theorem | re1r 21549 | The unity element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
β’ 1 = (1rββfld) | ||
Theorem | rele2 21550 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
β’ β€ = (leββfld) | ||
Theorem | relt 21551 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
β’ < = (ltββfld) | ||
Theorem | reds 21552 | The distance of the field of reals. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
β’ (abs β β ) = (distββfld) | ||
Theorem | redvr 21553 | The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
β’ ((π΄ β β β§ π΅ β β β§ π΅ β 0) β (π΄(/rββfld)π΅) = (π΄ / π΅)) | ||
Theorem | retos 21554 | The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
β’ βfld β Toset | ||
Theorem | refld 21555 | The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
β’ βfld β Field | ||
Theorem | refldcj 21556 | The conjugation operation of the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
β’ β = (*πββfld) | ||
Theorem | resrng 21557 | The real numbers form a star ring. (Contributed by Thierry Arnoux, 19-Apr-2019.) (Proof shortened by Thierry Arnoux, 11-Jan-2025.) |
β’ βfld β *-Ring | ||
Theorem | regsumsupp 21558* | The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
β’ ((πΉ:πΌβΆβ β§ πΉ finSupp 0 β§ πΌ β π) β (βfld Ξ£g πΉ) = Ξ£π₯ β (πΉ supp 0)(πΉβπ₯)) | ||
Theorem | rzgrp 21559 | The quotient group β / β€ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
β’ π = (βfld /s (βfld ~QG β€)) β β’ π β Grp | ||
Syntax | cphl 21560 | Extend class notation with class of all pre-Hilbert spaces. |
class PreHil | ||
Syntax | cipf 21561 | Extend class notation with inner product function. |
class Β·if | ||
Definition | df-phl 21562* | Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.) |
β’ PreHil = {π β LVec β£ [(Baseβπ) / π£][(Β·πβπ) / β][(Scalarβπ) / π](π β *-Ring β§ βπ₯ β π£ ((π¦ β π£ β¦ (π¦βπ₯)) β (π LMHom (ringLModβπ)) β§ ((π₯βπ₯) = (0gβπ) β π₯ = (0gβπ)) β§ βπ¦ β π£ ((*πβπ)β(π₯βπ¦)) = (π¦βπ₯)))} | ||
Definition | df-ipf 21563* | Define the inner product function. Usually we will use Β·π directly instead of Β·if, and they have the same behavior in most cases. The main advantage of Β·if is that it is a guaranteed function (ipffn 21587), while Β·π only has closure (ipcl 21569). (Contributed by Mario Carneiro, 12-Aug-2015.) |
β’ Β·if = (π β V β¦ (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ (π₯(Β·πβπ)π¦))) | ||
Theorem | isphl 21564* | The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ π = (Baseβπ) & β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ 0 = (0gβπ) & β’ β = (*πβπΉ) & β’ π = (0gβπΉ) β β’ (π β PreHil β (π β LVec β§ πΉ β *-Ring β§ βπ₯ β π ((π¦ β π β¦ (π¦ , π₯)) β (π LMHom (ringLModβπΉ)) β§ ((π₯ , π₯) = π β π₯ = 0 ) β§ βπ¦ β π ( β β(π₯ , π¦)) = (π¦ , π₯)))) | ||
Theorem | phllvec 21565 | A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
β’ (π β PreHil β π β LVec) | ||
Theorem | phllmod 21566 | A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
β’ (π β PreHil β π β LMod) | ||
Theorem | phlsrng 21567 | The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) β β’ (π β PreHil β πΉ β *-Ring) | ||
Theorem | phllmhm 21568* | The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ πΊ = (π₯ β π β¦ (π₯ , π΄)) β β’ ((π β PreHil β§ π΄ β π) β πΊ β (π LMHom (ringLModβπΉ))) | ||
Theorem | ipcl 21569 | Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ πΎ = (BaseβπΉ) β β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (π΄ , π΅) β πΎ) | ||
Theorem | ipcj 21570 | Conjugate of an inner product in a pre-Hilbert space. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ β = (*πβπΉ) β β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ( β β(π΄ , π΅)) = (π΅ , π΄)) | ||
Theorem | iporthcom 21571 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ π = (0gβπΉ) β β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((π΄ , π΅) = π β (π΅ , π΄) = π)) | ||
Theorem | ip0l 21572 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ π = (0gβπΉ) & β’ 0 = (0gβπ) β β’ ((π β PreHil β§ π΄ β π) β ( 0 , π΄) = π) | ||
Theorem | ip0r 21573 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ π = (0gβπΉ) & β’ 0 = (0gβπ) β β’ ((π β PreHil β§ π΄ β π) β (π΄ , 0 ) = π) | ||
Theorem | ipeq0 21574 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ π = (0gβπΉ) & β’ 0 = (0gβπ) β β’ ((π β PreHil β§ π΄ β π) β ((π΄ , π΄) = π β π΄ = 0 )) | ||
Theorem | ipdir 21575 | Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & ⒠⨣ = (+gβπΉ) β β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄ + π΅) , πΆ) = ((π΄ , πΆ) ⨣ (π΅ , πΆ))) | ||
Theorem | ipdi 21576 | Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & ⒠⨣ = (+gβπΉ) β β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄ , (π΅ + πΆ)) = ((π΄ , π΅) ⨣ (π΄ , πΆ))) | ||
Theorem | ip2di 21577 | Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ + = (+gβπ) & ⒠⨣ = (+gβπΉ) & β’ (π β π β PreHil) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β ((π΄ + π΅) , (πΆ + π·)) = (((π΄ , πΆ) ⨣ (π΅ , π·)) ⨣ ((π΄ , π·) ⨣ (π΅ , πΆ)))) | ||
Theorem | ipsubdir 21578 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (-gβπΉ) β β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β ((π΄ β π΅) , πΆ) = ((π΄ , πΆ)π(π΅ , πΆ))) | ||
Theorem | ipsubdi 21579 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (-gβπΉ) β β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β π)) β (π΄ , (π΅ β πΆ)) = ((π΄ , π΅)π(π΄ , πΆ))) | ||
Theorem | ip2subdi 21580 | Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ β = (-gβπ) & β’ π = (-gβπΉ) & β’ + = (+gβπΉ) & β’ (π β π β PreHil) & β’ (π β π΄ β π) & β’ (π β π΅ β π) & β’ (π β πΆ β π) & β’ (π β π· β π) β β’ (π β ((π΄ β π΅) , (πΆ β π·)) = (((π΄ , πΆ) + (π΅ , π·))π((π΄ , π·) + (π΅ , πΆ)))) | ||
Theorem | ipass 21581 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ πΎ = (BaseβπΉ) & β’ Β· = ( Β·π βπ) & β’ Γ = (.rβπΉ) β β’ ((π β PreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β ((π΄ Β· π΅) , πΆ) = (π΄ Γ (π΅ , πΆ))) | ||
Theorem | ipassr 21582 | "Associative" law for second argument of inner product (compare ipass 21581). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ πΎ = (BaseβπΉ) & β’ Β· = ( Β·π βπ) & β’ Γ = (.rβπΉ) & β’ β = (*πβπΉ) β β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β (π΄ , (πΆ Β· π΅)) = ((π΄ , π΅) Γ ( β βπΆ))) | ||
Theorem | ipassr2 21583 | "Associative" law for inner product. Conjugate version of ipassr 21582. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ πΉ = (Scalarβπ) & β’ , = (Β·πβπ) & β’ π = (Baseβπ) & β’ πΎ = (BaseβπΉ) & β’ Β· = ( Β·π βπ) & β’ Γ = (.rβπΉ) & β’ β = (*πβπΉ) β β’ ((π β PreHil β§ (π΄ β π β§ π΅ β π β§ πΆ β πΎ)) β ((π΄ , π΅) Γ πΆ) = (π΄ , (( β βπΆ) Β· π΅))) | ||
Theorem | ipffval 21584* | The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
β’ π = (Baseβπ) & β’ , = (Β·πβπ) & β’ Β· = (Β·ifβπ) β β’ Β· = (π₯ β π, π¦ β π β¦ (π₯ , π¦)) | ||
Theorem | ipfval 21585 | The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
β’ π = (Baseβπ) & β’ , = (Β·πβπ) & β’ Β· = (Β·ifβπ) β β’ ((π β π β§ π β π) β (π Β· π) = (π , π)) | ||
Theorem | ipfeq 21586 | If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
β’ π = (Baseβπ) & β’ , = (Β·πβπ) & β’ Β· = (Β·ifβπ) β β’ ( , Fn (π Γ π) β Β· = , ) | ||
Theorem | ipffn 21587 | The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
β’ π = (Baseβπ) & β’ , = (Β·ifβπ) β β’ , Fn (π Γ π) | ||
Theorem | phlipf 21588 | The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
β’ π = (Baseβπ) & β’ , = (Β·ifβπ) & β’ π = (Scalarβπ) & β’ πΎ = (Baseβπ) β β’ (π β PreHil β , :(π Γ π)βΆπΎ) | ||
Theorem | ip2eq 21589* | Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ , = (Β·πβπ) & β’ π = (Baseβπ) β β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (π΄ = π΅ β βπ₯ β π (π₯ , π΄) = (π₯ , π΅))) | ||
Theorem | isphld 21590* | Properties that determine a pre-Hilbert (inner product) space. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 7-Oct-2015.) |
β’ (π β π = (Baseβπ)) & β’ (π β + = (+gβπ)) & β’ (π β Β· = ( Β·π βπ)) & β’ (π β πΌ = (Β·πβπ)) & β’ (π β 0 = (0gβπ)) & β’ (π β πΉ = (Scalarβπ)) & β’ (π β πΎ = (BaseβπΉ)) & β’ (π β ⨣ = (+gβπΉ)) & β’ (π β Γ = (.rβπΉ)) & β’ (π β β = (*πβπΉ)) & β’ (π β π = (0gβπΉ)) & β’ (π β π β LVec) & β’ (π β πΉ β *-Ring) & β’ ((π β§ π₯ β π β§ π¦ β π) β (π₯πΌπ¦) β πΎ) & β’ ((π β§ π β πΎ β§ (π₯ β π β§ π¦ β π β§ π§ β π)) β (((π Β· π₯) + π¦)πΌπ§) = ((π Γ (π₯πΌπ§)) ⨣ (π¦πΌπ§))) & β’ ((π β§ π₯ β π β§ (π₯πΌπ₯) = π) β π₯ = 0 ) & β’ ((π β§ π₯ β π β§ π¦ β π) β ( β β(π₯πΌπ¦)) = (π¦πΌπ₯)) β β’ (π β π β PreHil) | ||
Theorem | phlpropd 21591* | If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015.) |
β’ (π β π΅ = (BaseβπΎ)) & β’ (π β π΅ = (BaseβπΏ)) & β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) & β’ (π β πΉ = (ScalarβπΎ)) & β’ (π β πΉ = (ScalarβπΏ)) & β’ π = (BaseβπΉ) & β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) & β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(Β·πβπΎ)π¦) = (π₯(Β·πβπΏ)π¦)) β β’ (π β (πΎ β PreHil β πΏ β PreHil)) | ||
Theorem | ssipeq 21592 | The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021.) |
β’ π = (π βΎs π) & β’ , = (Β·πβπ) & β’ π = (Β·πβπ) β β’ (π β π β π = , ) | ||
Theorem | phssipval 21593 | The inner product on a subspace in terms of the inner product on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
β’ π = (π βΎs π) & β’ , = (Β·πβπ) & β’ π = (Β·πβπ) & β’ π = (LSubSpβπ) β β’ (((π β PreHil β§ π β π) β§ (π΄ β π β§ π΅ β π)) β (π΄ππ΅) = (π΄ , π΅)) | ||
Theorem | phssip 21594 | The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
β’ π = (π βΎs π) & β’ π = (LSubSpβπ) & β’ Β· = (Β·ifβπ) & β’ π = (Β·ifβπ) β β’ ((π β PreHil β§ π β π) β π = ( Β· βΎ (π Γ π))) | ||
Theorem | phlssphl 21595 | A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.) |
β’ π = (π βΎs π) & β’ π = (LSubSpβπ) β β’ ((π β PreHil β§ π β π) β π β PreHil) | ||
Syntax | cocv 21596 | Extend class notation with orthocomplement of a subset. |
class ocv | ||
Syntax | ccss 21597 | Extend class notation with set of closed subspaces. |
class ClSubSp | ||
Syntax | cthl 21598 | Extend class notation with the Hilbert lattice. |
class toHL | ||
Definition | df-ocv 21599* | Define the orthocomplement function in a given set (which usually is a pre-Hilbert space): it associates with a subset its orthogonal subset (which in the case of a closed linear subspace is its orthocomplement). (Contributed by NM, 7-Oct-2011.) |
β’ ocv = (β β V β¦ (π β π« (Baseββ) β¦ {π₯ β (Baseββ) β£ βπ¦ β π (π₯(Β·πββ)π¦) = (0gβ(Scalarββ))})) | ||
Definition | df-css 21600* | Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) |
β’ ClSubSp = (β β V β¦ {π β£ π = ((ocvββ)β((ocvββ)βπ ))}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |