| Metamath
Proof Explorer Theorem List (p. 216 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | znleval 21501 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴 ≤ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)))) | ||
| Theorem | znleval2 21502 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≤ 𝐵 ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) | ||
| Theorem | zntoslem 21503 | Lemma for zntos 21504. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Toset) | ||
| Theorem | zntos 21504 | The ℤ/nℤ structure is a totally ordered set. (The order is not respected by the operations, except in the case 𝑁 = 0 when it coincides with the ordering on ℤ.) (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Toset) | ||
| Theorem | znhash 21505 | The ℤ/nℤ structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) | ||
| Theorem | znfi 21506 | The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) | ||
| Theorem | znfld 21507 | The ℤ/nℤ structure is a finite field when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℙ → 𝑌 ∈ Field) | ||
| Theorem | znidomb 21508 | The ℤ/nℤ structure is a domain (and hence a field) precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ)) | ||
| Theorem | znchr 21509 | Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (chr‘𝑌) = 𝑁) | ||
| Theorem | znunit 21510 | The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1)) | ||
| Theorem | znunithash 21511 | The size of the unit group of ℤ/nℤ. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁)) | ||
| Theorem | znrrg 21512 | The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐸 = 𝑈) | ||
| Theorem | cygznlem1 21513* | Lemma for cygzn 21517. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) ⇒ ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) | ||
| Theorem | cygznlem2a 21514* | Lemma for cygzn 21517. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) | ||
| Theorem | cygznlem2 21515* | Lemma for cygzn 21517. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝐹‘(𝐿‘𝑀)) = (𝑀 · 𝑋)) | ||
| Theorem | cygznlem3 21516* | A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛ℤ. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ (𝜑 → 𝐺 ≃𝑔 𝑌) | ||
| Theorem | cygzn 21517 | A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛ℤ, and an infinite cyclic group is isomorphic to ℤ / 0ℤ ≈ ℤ. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 𝑌) | ||
| Theorem | cygth 21518* | The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛ℤ, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ℤ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) | ||
| Theorem | cyggic 21519 | Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) | ||
| Theorem | frgpcyg 21520 | A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) ⇒ ⊢ (𝐼 ≼ 1o ↔ 𝐺 ∈ CycGrp) | ||
| Theorem | freshmansdream 21521 | For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋↑𝑃) + (𝑌↑𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝑃 = (chr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝑌)) = ((𝑃 ↑ 𝑋) + (𝑃 ↑ 𝑌))) | ||
| Theorem | frobrhm 21522* | In a commutative ring with prime characteristic, the Frobenius function 𝐹 is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (chr‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑃 ↑ 𝑥)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑅)) | ||
| Theorem | ofldchr 21523 | The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.) |
| ⊢ (𝐹 ∈ oField → (chr‘𝐹) = 0) | ||
| Theorem | cnmsgnsubg 21524 | The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ {1, -1} ∈ (SubGrp‘𝑀) | ||
| Theorem | cnmsgnbas 21525 | The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ {1, -1} = (Base‘𝑈) | ||
| Theorem | cnmsgngrp 21526 | The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ 𝑈 ∈ Grp | ||
| Theorem | psgnghm 21527 | The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝐹 = (𝑆 ↾s dom 𝑁) & ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝑁 ∈ (𝐹 GrpHom 𝑈)) | ||
| Theorem | psgnghm2 21528 | The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈)) | ||
| Theorem | psgninv 21529 | The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑁‘◡𝐹) = (𝑁‘𝐹)) | ||
| Theorem | psgnco 21530 | Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) | ||
| Theorem | zrhpsgnmhm 21531 | Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) | ||
| Theorem | zrhpsgninv 21532 | The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) | ||
| Theorem | evpmss 21533 | Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ (pmEven‘𝐷) ⊆ 𝑃 | ||
| Theorem | psgnevpmb 21534 | A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) | ||
| Theorem | psgnodpm 21535 | A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) | ||
| Theorem | psgnevpm 21536 | A permutation which is even has sign 1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁‘𝐹) = 1) | ||
| Theorem | psgnodpmr 21537 | If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | zrhpsgnevpm 21538 | The sign of an even permutation embedded into a ring is the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → ((𝑌 ∘ 𝑆)‘𝐹) = 1 ) | ||
| Theorem | zrhpsgnodpm 21539 | The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) | ||
| Theorem | cofipsgn 21540 | Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | ||
| Theorem | zrhpsgnelbas 21541 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) | ||
| Theorem | zrhcopsgnelbas 21542 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) (Proof shortened by AV, 3-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) | ||
| Theorem | evpmodpmf1o 21543* | The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | pmtrodpm 21544 | A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | psgnfix1 21545* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) | ||
| Theorem | psgnfix2 21546* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) | ||
| Theorem | psgndiflemB 21547* | Lemma 1 for psgndif 21549. (Contributed by AV, 27-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈)))) | ||
| Theorem | psgndiflemA 21548* | Lemma 2 for psgndif 21549. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))) | ||
| Theorem | psgndif 21549* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) | ||
| Theorem | copsgndif 21550* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) | ||
| Syntax | crefld 21551 | Extend class notation with the field of real numbers. |
| class ℝfld | ||
| Definition | df-refld 21552 | The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ ℝfld = (ℂfld ↾s ℝ) | ||
| Theorem | rebase 21553 | The base of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ℝ = (Base‘ℝfld) | ||
| Theorem | remulg 21554 | The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑁(.g‘ℝfld)𝐴) = (𝑁 · 𝐴)) | ||
| Theorem | resubdrg 21555 | The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | ||
| Theorem | resubgval 21556 | Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ − = (-g‘ℝfld) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
| Theorem | replusg 21557 | The addition operation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ + = (+g‘ℝfld) | ||
| Theorem | remulr 21558 | The multiplication operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ · = (.r‘ℝfld) | ||
| Theorem | re0g 21559 | The zero element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ 0 = (0g‘ℝfld) | ||
| Theorem | re1r 21560 | The unity element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ 1 = (1r‘ℝfld) | ||
| Theorem | rele2 21561 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ≤ = (le‘ℝfld) | ||
| Theorem | relt 21562 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ < = (lt‘ℝfld) | ||
| Theorem | reds 21563 | The distance of the field of reals. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
| ⊢ (abs ∘ − ) = (dist‘ℝfld) | ||
| Theorem | redvr 21564 | The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴(/r‘ℝfld)𝐵) = (𝐴 / 𝐵)) | ||
| Theorem | retos 21565 | The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ℝfld ∈ Toset | ||
| Theorem | refld 21566 | The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ℝfld ∈ Field | ||
| Theorem | refldcj 21567 | The conjugation operation of the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ ∗ = (*𝑟‘ℝfld) | ||
| Theorem | resrng 21568 | The real numbers form a star ring. (Contributed by Thierry Arnoux, 19-Apr-2019.) (Proof shortened by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ ℝfld ∈ *-Ring | ||
| Theorem | regsumsupp 21569* | The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
| ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) | ||
| Theorem | rzgrp 21570 | The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) ⇒ ⊢ 𝑅 ∈ Grp | ||
| Syntax | cphl 21571 | Extend class notation with class of all pre-Hilbert spaces. |
| class PreHil | ||
| Syntax | cipf 21572 | Extend class notation with inner product function. |
| class ·if | ||
| Definition | df-phl 21573* | Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.) |
| ⊢ PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} | ||
| Definition | df-ipf 21574* | Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21598), while ·𝑖 only has closure (ipcl 21580). (Contributed by Mario Carneiro, 12-Aug-2015.) |
| ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | ||
| Theorem | isphl 21575* | The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) | ||
| Theorem | phllvec 21576 | A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | ||
| Theorem | phllmod 21577 | A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | ||
| Theorem | phlsrng 21578 | The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) | ||
| Theorem | phllmhm 21579* | The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) | ||
| Theorem | ipcl 21580 | Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) | ||
| Theorem | ipcj 21581 | Conjugate of an inner product in a pre-Hilbert space. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) | ||
| Theorem | iporthcom 21582 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) | ||
| Theorem | ip0l 21583 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) | ||
| Theorem | ip0r 21584 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 0 ) = 𝑍) | ||
| Theorem | ipeq0 21585 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) | ||
| Theorem | ipdir 21586 | Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) | ||
| Theorem | ipdi 21587 | Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) | ||
| Theorem | ip2di 21588 | Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) | ||
| Theorem | ipsubdir 21589 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) | ||
| Theorem | ipsubdi 21590 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) | ||
| Theorem | ip2subdi 21591 | Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) & ⊢ + = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶)))) | ||
| Theorem | ipass 21592 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶))) | ||
| Theorem | ipassr 21593 | "Associative" law for second argument of inner product (compare ipass 21592). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) | ||
| Theorem | ipassr2 21594 | "Associative" law for inner product. Conjugate version of ipassr 21593. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) | ||
| Theorem | ipffval 21595* | The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) | ||
| Theorem | ipfval 21596 | The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) | ||
| Theorem | ipfeq 21597 | If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) | ||
| Theorem | ipffn 21598 | The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·if‘𝑊) ⇒ ⊢ , Fn (𝑉 × 𝑉) | ||
| Theorem | phlipf 21599 | The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·if‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ PreHil → , :(𝑉 × 𝑉)⟶𝐾) | ||
| Theorem | ip2eq 21600* | Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |