| Metamath
Proof Explorer Theorem List (p. 216 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | zrhpsgnodpm 21501 | The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) | ||
| Theorem | cofipsgn 21502 | Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | ||
| Theorem | zrhpsgnelbas 21503 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) | ||
| Theorem | zrhcopsgnelbas 21504 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) (Proof shortened by AV, 3-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) | ||
| Theorem | evpmodpmf1o 21505* | The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | pmtrodpm 21506 | A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | psgnfix1 21507* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) | ||
| Theorem | psgnfix2 21508* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) | ||
| Theorem | psgndiflemB 21509* | Lemma 1 for psgndif 21511. (Contributed by AV, 27-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈)))) | ||
| Theorem | psgndiflemA 21510* | Lemma 2 for psgndif 21511. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))) | ||
| Theorem | psgndif 21511* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) | ||
| Theorem | copsgndif 21512* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) | ||
| Syntax | crefld 21513 | Extend class notation with the field of real numbers. |
| class ℝfld | ||
| Definition | df-refld 21514 | The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ ℝfld = (ℂfld ↾s ℝ) | ||
| Theorem | rebase 21515 | The base of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ℝ = (Base‘ℝfld) | ||
| Theorem | remulg 21516 | The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑁(.g‘ℝfld)𝐴) = (𝑁 · 𝐴)) | ||
| Theorem | resubdrg 21517 | The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | ||
| Theorem | resubgval 21518 | Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ − = (-g‘ℝfld) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
| Theorem | replusg 21519 | The addition operation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ + = (+g‘ℝfld) | ||
| Theorem | remulr 21520 | The multiplication operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ · = (.r‘ℝfld) | ||
| Theorem | re0g 21521 | The zero element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ 0 = (0g‘ℝfld) | ||
| Theorem | re1r 21522 | The unity element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ 1 = (1r‘ℝfld) | ||
| Theorem | rele2 21523 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ≤ = (le‘ℝfld) | ||
| Theorem | relt 21524 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ < = (lt‘ℝfld) | ||
| Theorem | reds 21525 | The distance of the field of reals. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
| ⊢ (abs ∘ − ) = (dist‘ℝfld) | ||
| Theorem | redvr 21526 | The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴(/r‘ℝfld)𝐵) = (𝐴 / 𝐵)) | ||
| Theorem | retos 21527 | The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ℝfld ∈ Toset | ||
| Theorem | refld 21528 | The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ℝfld ∈ Field | ||
| Theorem | refldcj 21529 | The conjugation operation of the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ ∗ = (*𝑟‘ℝfld) | ||
| Theorem | resrng 21530 | The real numbers form a star ring. (Contributed by Thierry Arnoux, 19-Apr-2019.) (Proof shortened by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ ℝfld ∈ *-Ring | ||
| Theorem | regsumsupp 21531* | The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
| ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) | ||
| Theorem | rzgrp 21532 | The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) ⇒ ⊢ 𝑅 ∈ Grp | ||
| Syntax | cphl 21533 | Extend class notation with class of all pre-Hilbert spaces. |
| class PreHil | ||
| Syntax | cipf 21534 | Extend class notation with inner product function. |
| class ·if | ||
| Definition | df-phl 21535* | Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.) |
| ⊢ PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} | ||
| Definition | df-ipf 21536* | Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21560), while ·𝑖 only has closure (ipcl 21542). (Contributed by Mario Carneiro, 12-Aug-2015.) |
| ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | ||
| Theorem | isphl 21537* | The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) | ||
| Theorem | phllvec 21538 | A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | ||
| Theorem | phllmod 21539 | A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | ||
| Theorem | phlsrng 21540 | The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) | ||
| Theorem | phllmhm 21541* | The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) | ||
| Theorem | ipcl 21542 | Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) | ||
| Theorem | ipcj 21543 | Conjugate of an inner product in a pre-Hilbert space. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) | ||
| Theorem | iporthcom 21544 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) | ||
| Theorem | ip0l 21545 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) | ||
| Theorem | ip0r 21546 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 0 ) = 𝑍) | ||
| Theorem | ipeq0 21547 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) | ||
| Theorem | ipdir 21548 | Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) | ||
| Theorem | ipdi 21549 | Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) | ||
| Theorem | ip2di 21550 | Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) | ||
| Theorem | ipsubdir 21551 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) | ||
| Theorem | ipsubdi 21552 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) | ||
| Theorem | ip2subdi 21553 | Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) & ⊢ + = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶)))) | ||
| Theorem | ipass 21554 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶))) | ||
| Theorem | ipassr 21555 | "Associative" law for second argument of inner product (compare ipass 21554). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) | ||
| Theorem | ipassr2 21556 | "Associative" law for inner product. Conjugate version of ipassr 21555. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) | ||
| Theorem | ipffval 21557* | The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) | ||
| Theorem | ipfval 21558 | The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) | ||
| Theorem | ipfeq 21559 | If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) | ||
| Theorem | ipffn 21560 | The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·if‘𝑊) ⇒ ⊢ , Fn (𝑉 × 𝑉) | ||
| Theorem | phlipf 21561 | The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·if‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ PreHil → , :(𝑉 × 𝑉)⟶𝐾) | ||
| Theorem | ip2eq 21562* | Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))) | ||
| Theorem | isphld 21563* | Properties that determine a pre-Hilbert (inner product) space. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐼 = (·𝑖‘𝑊)) & ⊢ (𝜑 → 0 = (0g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐾 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ = (+g‘𝐹)) & ⊢ (𝜑 → × = (.r‘𝐹)) & ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) & ⊢ (𝜑 → 𝑂 = (0g‘𝐹)) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐹 ∈ *-Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥𝐼𝑦) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐾 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝑞 · 𝑥) + 𝑦)𝐼𝑧) = ((𝑞 × (𝑥𝐼𝑧)) ⨣ (𝑦𝐼𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑥𝐼𝑥) = 𝑂) → 𝑥 = 0 ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ( ∗ ‘(𝑥𝐼𝑦)) = (𝑦𝐼𝑥)) ⇒ ⊢ (𝜑 → 𝑊 ∈ PreHil) | ||
| Theorem | phlpropd 21564* | If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(·𝑖‘𝐾)𝑦) = (𝑥(·𝑖‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil)) | ||
| Theorem | ssipeq 21565 | The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑃 = (·𝑖‘𝑋) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑃 = , ) | ||
| Theorem | phssipval 21566 | The inner product on a subspace in terms of the inner product on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑃 = (·𝑖‘𝑋) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈)) → (𝐴𝑃𝐵) = (𝐴 , 𝐵)) | ||
| Theorem | phssip 21567 | The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ · = (·if‘𝑊) & ⊢ 𝑃 = (·if‘𝑋) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) | ||
| Theorem | phlssphl 21568 | A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ PreHil) | ||
| Syntax | cocv 21569 | Extend class notation with orthocomplement of a subset. |
| class ocv | ||
| Syntax | ccss 21570 | Extend class notation with set of closed subspaces. |
| class ClSubSp | ||
| Syntax | cthl 21571 | Extend class notation with the Hilbert lattice. |
| class toHL | ||
| Definition | df-ocv 21572* | Define the orthocomplement function in a given set (which usually is a pre-Hilbert space): it associates with a subset its orthogonal subset (which in the case of a closed linear subspace is its orthocomplement). (Contributed by NM, 7-Oct-2011.) |
| ⊢ ocv = (ℎ ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘ℎ) ↦ {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) | ||
| Definition | df-css 21573* | Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) |
| ⊢ ClSubSp = (ℎ ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠))}) | ||
| Definition | df-thl 21574 | Define the Hilbert lattice of closed subspaces of a given pre-Hilbert space. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) | ||
| Theorem | ocvfval 21575* | The orthocomplement operation. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → ⊥ = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) | ||
| Theorem | ocvval 21576* | Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑆 (𝑥 , 𝑦) = 0 }) | ||
| Theorem | elocv 21577* | Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) | ||
| Theorem | ocvi 21578 | Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) | ||
| Theorem | ocvss 21579 | The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 | ||
| Theorem | ocvocv 21580 | A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) | ||
| Theorem | ocvlss 21581 | The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐿) | ||
| Theorem | ocv2ss 21582 | Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) | ||
| Theorem | ocvin 21583 | An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) | ||
| Theorem | ocvsscon 21584 | Two ways to say that 𝑆 and 𝑇 are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → (𝑆 ⊆ ( ⊥ ‘𝑇) ↔ 𝑇 ⊆ ( ⊥ ‘𝑆))) | ||
| Theorem | ocvlsp 21585 | The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘(𝑁‘𝑆)) = ( ⊥ ‘𝑆)) | ||
| Theorem | ocv0 21586 | The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘∅) = 𝑉 | ||
| Theorem | ocvz 21587 | The orthocomplement of the zero subspace. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → ( ⊥ ‘{ 0 }) = 𝑉) | ||
| Theorem | ocv1 21588 | The orthocomplement of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → ( ⊥ ‘𝑉) = { 0 }) | ||
| Theorem | unocv 21589 | The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘(𝐴 ∪ 𝐵)) = (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) | ||
| Theorem | iunocv 21590* | The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) | ||
| Theorem | cssval 21591* | The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) | ||
| Theorem | iscss 21592 | The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
| ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) | ||
| Theorem | cssi 21593 | Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆))) | ||
| Theorem | cssss 21594 | A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉) | ||
| Theorem | iscss2 21595 | It is sufficient to prove that the double orthocomplement is a subset of the target set to show that the set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → (𝑆 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘𝑆)) ⊆ 𝑆)) | ||
| Theorem | ocvcss 21596 | The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐶) | ||
| Theorem | cssincl 21597 | The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶) | ||
| Theorem | css0 21598 | The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝐶 = (ClSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → { 0 } ∈ 𝐶) | ||
| Theorem | css1 21599 | The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → 𝑉 ∈ 𝐶) | ||
| Theorem | csslss 21600 | A closed subspace of a pre-Hilbert space is a linear subspace. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ 𝐶 = (ClSubSp‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐶) → 𝑆 ∈ 𝐿) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |