![]() |
Metamath
Proof Explorer Theorem List (p. 216 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | zringlpir 21501 | The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ ℤring ∈ LPIR | ||
Theorem | zringndrg 21502 | The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
⊢ ℤring ∉ DivRing | ||
Theorem | zringcyg 21503 | The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤring ∈ CycGrp | ||
Theorem | zringsubgval 21504 | Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.) |
⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
Theorem | zringmpg 21505 | The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.) |
⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | ||
Theorem | prmirredlem 21506 | A positive integer is irreducible over ℤ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) | ||
Theorem | dfprm2 21507 | The positive irreducible elements of ℤ are the prime numbers. This is an alternative way to define ℙ. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ ℙ = (ℕ ∩ 𝐼) | ||
Theorem | prmirred 21508 | The irreducible elements of ℤ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ)) | ||
Theorem | expghm 21509* | Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝑀 = (mulGrp‘ℂfld) & ⊢ 𝑈 = (𝑀 ↾s (ℂ ∖ {0})) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴↑𝑥)) ∈ (ℤring GrpHom 𝑈)) | ||
Theorem | mulgghm2 21510* | The powers of a group element give a homomorphism from ℤ to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅)) | ||
Theorem | mulgrhm 21511* | The powers of the element 1 give a ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅)) | ||
Theorem | mulgrhm2 21512* | The powers of the element 1 give the unique ring homomorphism from ℤ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ · = (.g‘𝑅) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹}) | ||
Theorem | irinitoringc 21513 | The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of [Adamek] p. 101 , and example in [Lang] p. 58. (Contributed by AV, 3-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ℤring ∈ 𝑈) & ⊢ 𝐶 = (RingCat‘𝑈) ⇒ ⊢ (𝜑 → ℤring ∈ (InitO‘𝐶)) | ||
Theorem | nzerooringczr 21514 | There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐶 = (RingCat‘𝑈) & ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → ℤring ∈ 𝑈) ⇒ ⊢ (𝜑 → (ZeroO‘𝐶) = ∅) | ||
In this subsubsection, an example is given for a condition for a non-unital ring to be unital. This example is already mentioned in the comment for df-subrg 20597: " The subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity 〈1, 0〉 which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring." The theorems in this subsubsection do not assume that 𝑅 = (ℤring ×s ℤring) is a ring (which can be proven directly very easily, see pzriprng 21531), but provide the prerequisites for ring2idlqusb 21343 to show that 𝑅 is a unital ring, and for ring2idlqus1 21352 to show that 〈1, 1〉 is its ring unity. | ||
Theorem | pzriprnglem1 21515 | Lemma 1 for pzriprng 21531: 𝑅 is a non-unital (actually a unital!) ring. (Contributed by AV, 17-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) ⇒ ⊢ 𝑅 ∈ Rng | ||
Theorem | pzriprnglem2 21516 | Lemma 2 for pzriprng 21531: The base set of 𝑅 is the cartesian product of the integers. (Contributed by AV, 17-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) ⇒ ⊢ (Base‘𝑅) = (ℤ × ℤ) | ||
Theorem | pzriprnglem3 21517* | Lemma 3 for pzriprng 21531: An element of 𝐼 is an ordered pair. (Contributed by AV, 18-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) ⇒ ⊢ (𝑋 ∈ 𝐼 ↔ ∃𝑥 ∈ ℤ 𝑋 = 〈𝑥, 0〉) | ||
Theorem | pzriprnglem4 21518 | Lemma 4 for pzriprng 21531: 𝐼 is a subgroup of 𝑅. (Contributed by AV, 18-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) ⇒ ⊢ 𝐼 ∈ (SubGrp‘𝑅) | ||
Theorem | pzriprnglem5 21519 | Lemma 5 for pzriprng 21531: 𝐼 is a subring of the non-unital ring 𝑅. (Contributed by AV, 18-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) ⇒ ⊢ 𝐼 ∈ (SubRng‘𝑅) | ||
Theorem | pzriprnglem6 21520 | Lemma 6 for pzriprng 21531: 𝐽 has a ring unity. (Contributed by AV, 19-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) ⇒ ⊢ (𝑋 ∈ 𝐼 → ((〈1, 0〉(.r‘𝐽)𝑋) = 𝑋 ∧ (𝑋(.r‘𝐽)〈1, 0〉) = 𝑋)) | ||
Theorem | pzriprnglem7 21521 | Lemma 7 for pzriprng 21531: 𝐽 is a unital ring. (Contributed by AV, 19-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) ⇒ ⊢ 𝐽 ∈ Ring | ||
Theorem | pzriprnglem8 21522 | Lemma 8 for pzriprng 21531: 𝐼 resp. 𝐽 is a two-sided ideal of the non-unital ring 𝑅. (Contributed by AV, 21-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) ⇒ ⊢ 𝐼 ∈ (2Ideal‘𝑅) | ||
Theorem | pzriprnglem9 21523 | Lemma 9 for pzriprng 21531: The ring unity of the ring 𝐽. (Contributed by AV, 22-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ 1 = 〈1, 0〉 | ||
Theorem | pzriprnglem10 21524 | Lemma 10 for pzriprng 21531: The equivalence classes of 𝑅 modulo 𝐽. (Contributed by AV, 22-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → [〈𝑋, 𝑌〉] ∼ = (ℤ × {𝑌})) | ||
Theorem | pzriprnglem11 21525* | Lemma 11 for pzriprng 21531: The base set of the quotient of 𝑅 and 𝐽. (Contributed by AV, 22-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ (Base‘𝑄) = ∪ 𝑟 ∈ ℤ {(ℤ × {𝑟})} | ||
Theorem | pzriprnglem12 21526 | Lemma 12 for pzriprng 21531: 𝑄 has a ring unity. (Contributed by AV, 23-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ (𝑋 ∈ (Base‘𝑄) → (((ℤ × {1})(.r‘𝑄)𝑋) = 𝑋 ∧ (𝑋(.r‘𝑄)(ℤ × {1})) = 𝑋)) | ||
Theorem | pzriprnglem13 21527 | Lemma 13 for pzriprng 21531: 𝑄 is a unital ring. (Contributed by AV, 23-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ 𝑄 ∈ Ring | ||
Theorem | pzriprnglem14 21528 | Lemma 14 for pzriprng 21531: The ring unity of the ring 𝑄. (Contributed by AV, 23-Mar-2025.) |
⊢ 𝑅 = (ℤring ×s ℤring) & ⊢ 𝐼 = (ℤ × {0}) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ (1r‘𝑄) = (ℤ × {1}) | ||
Theorem | pzriprngALT 21529 | The non-unital ring (ℤring ×s ℤring) is unital because it has the two-sided ideal (ℤ × {0}), which is unital, and the quotient of the ring and the ideal is also unital (using ring2idlqusb 21343). (Contributed by AV, 23-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (ℤring ×s ℤring) ∈ Ring | ||
Theorem | pzriprng1ALT 21530 | The ring unity of the ring (ℤring ×s ℤring) constructed from the ring unity of the two-sided ideal (ℤ × {0}) and the ring unity of the quotient of the ring and the ideal (using ring2idlqus1 21352). (Contributed by AV, 24-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (1r‘(ℤring ×s ℤring)) = 〈1, 1〉 | ||
Theorem | pzriprng 21531 | The non-unital ring (ℤring ×s ℤring) is unital. Direct proof in contrast to pzriprngALT 21529. (Contributed by AV, 25-Mar-2025.) |
⊢ (ℤring ×s ℤring) ∈ Ring | ||
Theorem | pzriprng1 21532 | The ring unity of the ring (ℤring ×s ℤring). Direct proof in contrast to pzriprng1ALT 21530. (Contributed by AV, 25-Mar-2025.) |
⊢ (1r‘(ℤring ×s ℤring)) = 〈1, 1〉 | ||
Syntax | czrh 21533 | Map the rationals into a field, or the integers into a ring. |
class ℤRHom | ||
Syntax | czlm 21534 | Augment an abelian group with vector space operations to turn it into a ℤ-module. |
class ℤMod | ||
Syntax | cchr 21535 | Syntax for ring characteristic. |
class chr | ||
Syntax | czn 21536 | The ring of integers modulo 𝑛. |
class ℤ/nℤ | ||
Definition | df-zrh 21537 | Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 19108). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) | ||
Definition | df-zlm 21538 | Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝑔)〉)) | ||
Definition | df-chr 21539 | The characteristic of a ring is the smallest positive integer which is equal to 0 when interpreted in the ring, or 0 if there is no such positive integer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ chr = (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r‘𝑔))) | ||
Definition | df-zn 21540* | Define the ring of integers mod 𝑛. This is literally the quotient ring of ℤ by the ideal 𝑛ℤ, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ ℤ/nℤ = (𝑛 ∈ ℕ0 ↦ ⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx), ⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) | ||
Theorem | zrhval 21541 | Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) | ||
Theorem | zrhval2 21542* | Alternate value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐿 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))) | ||
Theorem | zrhmulg 21543 | Value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁 · 1 )) | ||
Theorem | zrhrhmb 21544 | The ℤRHom homomorphism is the unique ring homomorphism from ℤ. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐹 ∈ (ℤring RingHom 𝑅) ↔ 𝐹 = 𝐿)) | ||
Theorem | zrhrhm 21545 | The ℤRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ 𝐿 = (ℤRHom‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅)) | ||
Theorem | zrh1 21546 | Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐿‘1) = 1 ) | ||
Theorem | zrh0 21547 | Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐿‘0) = 0 ) | ||
Theorem | zrhpropd 21548* | The ℤ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿)) | ||
Theorem | zlmval 21549 | Augment an abelian group with vector space operations to turn it into a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) | ||
Theorem | zlmlem 21550 | Lemma for zlmbas 21552 and zlmplusg 21554. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Scalar‘ndx) & ⊢ (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ⇒ ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) | ||
Theorem | zlmlemOLD 21551 | Obsolete version of zlmlem 21550 as of 3-Nov-2024. Lemma for zlmbas 21552 and zlmplusg 21554. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < 5 ⇒ ⊢ (𝐸‘𝐺) = (𝐸‘𝑊) | ||
Theorem | zlmbas 21552 | Base set of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = (Base‘𝑊) | ||
Theorem | zlmbasOLD 21553 | Obsolete version of zlmbas 21552 as of 3-Nov-2024. Base set of a ℤ -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = (Base‘𝑊) | ||
Theorem | zlmplusg 21554 | Group operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (+g‘𝑊) | ||
Theorem | zlmplusgOLD 21555 | Obsolete version of zlmbas 21552 as of 3-Nov-2024. Group operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (+g‘𝑊) | ||
Theorem | zlmmulr 21556 | Ring operation of a ℤ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ · = (.r‘𝐺) ⇒ ⊢ · = (.r‘𝑊) | ||
Theorem | zlmmulrOLD 21557 | Obsolete version of zlmbas 21552 as of 3-Nov-2024. Ring operation of a ℤ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ · = (.r‘𝐺) ⇒ ⊢ · = (.r‘𝑊) | ||
Theorem | zlmsca 21558 | Scalar ring of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.) |
⊢ 𝑊 = (ℤMod‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) | ||
Theorem | zlmvsca 21559 | Scalar multiplication operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑊 = (ℤMod‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ · = ( ·𝑠 ‘𝑊) | ||
Theorem | zlmlmod 21560 | The ℤ-module operation turns an arbitrary abelian group into a left module over ℤ. Also see zlmassa 21946. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑊 = (ℤMod‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) | ||
Theorem | chrval 21561 | Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝑂 = (od‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐶 = (chr‘𝑅) ⇒ ⊢ (𝑂‘ 1 ) = 𝐶 | ||
Theorem | chrcl 21562 | Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝐶 = (chr‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐶 ∈ ℕ0) | ||
Theorem | chrid 21563 | The canonical ℤ ring homomorphism applied to a ring's characteristic is zero. (Contributed by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝐶 = (chr‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐿‘𝐶) = 0 ) | ||
Theorem | chrdvds 21564 | The ℤ ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015.) |
⊢ 𝐶 = (chr‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ 𝑁 ↔ (𝐿‘𝑁) = 0 )) | ||
Theorem | chrcong 21565 | If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015.) |
⊢ 𝐶 = (chr‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) | ||
Theorem | dvdschrmulg 21566 | In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
⊢ 𝐶 = (chr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) | ||
Theorem | fermltlchr 21567 | A generalization of Fermat's little theorem in a commutative ring 𝐹 of prime characteristic. See fermltl 16831. (Contributed by Thierry Arnoux, 9-Jan-2024.) |
⊢ 𝑃 = (chr‘𝐹) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ↑ = (.g‘(mulGrp‘𝐹)) & ⊢ 𝐴 = ((ℤRHom‘𝐹)‘𝐸) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐸 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ CRing) ⇒ ⊢ (𝜑 → (𝑃 ↑ 𝐴) = 𝐴) | ||
Theorem | chrnzr 21568 | Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1)) | ||
Theorem | chrrhm 21569 | The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅)) | ||
Theorem | domnchr 21570 | The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ)) | ||
Theorem | znlidl 21571 | The set 𝑛ℤ is an ideal in ℤ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) ⇒ ⊢ (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) | ||
Theorem | zncrng2 21572 | Making a commutative ring as a quotient of ℤ and 𝑛ℤ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ⇒ ⊢ (𝑁 ∈ ℤ → 𝑈 ∈ CRing) | ||
Theorem | znval 21573 | The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ≤ 〉)) | ||
Theorem | znle 21574 | The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) | ||
Theorem | znval2 21575 | Self-referential expression for the ℤ/nℤ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ≤ 〉)) | ||
Theorem | znbaslem 21576 | Lemma for znbas 21585. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (le‘ndx) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑈) = (𝐸‘𝑌)) | ||
Theorem | znbaslemOLD 21577 | Obsolete version of znbaslem 21576 as of 3-Nov-2024. Lemma for znbas 21585. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐸 = Slot 𝐾 & ⊢ 𝐾 ∈ ℕ & ⊢ 𝐾 < ;10 ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑈) = (𝐸‘𝑌)) | ||
Theorem | znbas2 21578 | The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌)) | ||
Theorem | znbas2OLD 21579 | Obsolete version of znbas2 21578 as of 3-Nov-2024. The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌)) | ||
Theorem | znadd 21580 | The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (+g‘𝑈) = (+g‘𝑌)) | ||
Theorem | znaddOLD 21581 | Obsolete version of znadd 21580 as of 3-Nov-2024. The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (+g‘𝑈) = (+g‘𝑌)) | ||
Theorem | znmul 21582 | The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (.r‘𝑈) = (.r‘𝑌)) | ||
Theorem | znmulOLD 21583 | Obsolete version of znadd 21580 as of 3-Nov-2024. The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (.r‘𝑈) = (.r‘𝑌)) | ||
Theorem | znzrh 21584 | The ℤ ring homomorphism of ℤ/nℤ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) = (ℤRHom‘𝑌)) | ||
Theorem | znbas 21585 | The base set of ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑅 = (ℤring ~QG (𝑆‘{𝑁})) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘𝑌)) | ||
Theorem | zncrng 21586 | ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) | ||
Theorem | znzrh2 21587* | The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) | ||
Theorem | znzrhval 21588 | The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑆 = (RSpan‘ℤring) & ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) | ||
Theorem | znzrhfo 21589 | The ℤ ring homomorphism is a surjection onto ℤ/nℤ. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→𝐵) | ||
Theorem | zncyg 21590 | The group ℤ / 𝑛ℤ is cyclic for all 𝑛 (including 𝑛 = 0). (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CycGrp) | ||
Theorem | zndvds 21591 | Express equality of equivalence classes in ℤ / 𝑛ℤ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘𝐵) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | ||
Theorem | zndvds0 21592 | Special case of zndvds 21591 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) | ||
Theorem | znf1o 21593 | The function 𝐹 enumerates all equivalence classes in ℤ/nℤ for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐹:𝑊–1-1-onto→𝐵) | ||
Theorem | zzngim 21594 | The ℤ ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑌 = (ℤ/nℤ‘0) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) | ||
Theorem | znle2 21595 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) | ||
Theorem | znleval 21596 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴 ≤ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)))) | ||
Theorem | znleval2 21597 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≤ 𝐵 ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) | ||
Theorem | zntoslem 21598 | Lemma for zntos 21599. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Toset) | ||
Theorem | zntos 21599 | The ℤ/nℤ structure is a totally ordered set. (The order is not respected by the operations, except in the case 𝑁 = 0 when it coincides with the ordering on ℤ.) (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Toset) | ||
Theorem | znhash 21600 | The ℤ/nℤ structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |