| Metamath
Proof Explorer Theorem List (p. 216 of 495) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30866) |
(30867-32389) |
(32390-49419) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | chrcong 21501 | If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015.) |
| ⊢ 𝐶 = (chr‘𝑅) & ⊢ 𝐿 = (ℤRHom‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) | ||
| Theorem | dvdschrmulg 21502 | In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
| ⊢ 𝐶 = (chr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) | ||
| Theorem | fermltlchr 21503 | A generalization of Fermat's little theorem in a commutative ring 𝐹 of prime characteristic. See fermltl 16804. (Contributed by Thierry Arnoux, 9-Jan-2024.) |
| ⊢ 𝑃 = (chr‘𝐹) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ↑ = (.g‘(mulGrp‘𝐹)) & ⊢ 𝐴 = ((ℤRHom‘𝐹)‘𝐸) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐸 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ CRing) ⇒ ⊢ (𝜑 → (𝑃 ↑ 𝐴) = 𝐴) | ||
| Theorem | chrnzr 21504 | Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1)) | ||
| Theorem | chrrhm 21505 | The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅)) | ||
| Theorem | domnchr 21506 | The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ)) | ||
| Theorem | znlidl 21507 | The set 𝑛ℤ is an ideal in ℤ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) ⇒ ⊢ (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) | ||
| Theorem | zncrng2 21508 | Making a commutative ring as a quotient of ℤ and 𝑛ℤ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) ⇒ ⊢ (𝑁 ∈ ℤ → 𝑈 ∈ CRing) | ||
| Theorem | znval 21509 | The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ≤ 〉)) | ||
| Theorem | znle 21510 | The value of the ℤ/nℤ structure. It is defined as the quotient ring ℤ / 𝑛ℤ, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) | ||
| Theorem | znval2 21511 | Self-referential expression for the ℤ/nℤ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ≤ 〉)) | ||
| Theorem | znbaslem 21512 | Lemma for znbas 21517. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (le‘ndx) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑈) = (𝐸‘𝑌)) | ||
| Theorem | znbas2 21513 | The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌)) | ||
| Theorem | znadd 21514 | The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (+g‘𝑈) = (+g‘𝑌)) | ||
| Theorem | znmul 21515 | The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (.r‘𝑈) = (.r‘𝑌)) | ||
| Theorem | znzrh 21516 | The ℤ ring homomorphism of ℤ/nℤ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) = (ℤRHom‘𝑌)) | ||
| Theorem | znbas 21517 | The base set of ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑅 = (ℤring ~QG (𝑆‘{𝑁})) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘𝑌)) | ||
| Theorem | zncrng 21518 | ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) | ||
| Theorem | znzrh2 21519* | The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) | ||
| Theorem | znzrhval 21520 | The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) | ||
| Theorem | znzrhfo 21521 | The ℤ ring homomorphism is a surjection onto ℤ/nℤ. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→𝐵) | ||
| Theorem | zncyg 21522 | The group ℤ / 𝑛ℤ is cyclic for all 𝑛 (including 𝑛 = 0). (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CycGrp) | ||
| Theorem | zndvds 21523 | Express equality of equivalence classes in ℤ / 𝑛ℤ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘𝐵) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | ||
| Theorem | zndvds0 21524 | Special case of zndvds 21523 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) | ||
| Theorem | znf1o 21525 | The function 𝐹 enumerates all equivalence classes in ℤ/nℤ for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐹:𝑊–1-1-onto→𝐵) | ||
| Theorem | zzngim 21526 | The ℤ ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘0) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) | ||
| Theorem | znle2 21527 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) | ||
| Theorem | znleval 21528 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴 ≤ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)))) | ||
| Theorem | znleval2 21529 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≤ 𝐵 ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) | ||
| Theorem | zntoslem 21530 | Lemma for zntos 21531. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Toset) | ||
| Theorem | zntos 21531 | The ℤ/nℤ structure is a totally ordered set. (The order is not respected by the operations, except in the case 𝑁 = 0 when it coincides with the ordering on ℤ.) (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Toset) | ||
| Theorem | znhash 21532 | The ℤ/nℤ structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) | ||
| Theorem | znfi 21533 | The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) | ||
| Theorem | znfld 21534 | The ℤ/nℤ structure is a finite field when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℙ → 𝑌 ∈ Field) | ||
| Theorem | znidomb 21535 | The ℤ/nℤ structure is a domain (and hence a field) precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ)) | ||
| Theorem | znchr 21536 | Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (chr‘𝑌) = 𝑁) | ||
| Theorem | znunit 21537 | The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1)) | ||
| Theorem | znunithash 21538 | The size of the unit group of ℤ/nℤ. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁)) | ||
| Theorem | znrrg 21539 | The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐸 = 𝑈) | ||
| Theorem | cygznlem1 21540* | Lemma for cygzn 21544. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) ⇒ ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) | ||
| Theorem | cygznlem2a 21541* | Lemma for cygzn 21544. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) | ||
| Theorem | cygznlem2 21542* | Lemma for cygzn 21544. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝐹‘(𝐿‘𝑀)) = (𝑀 · 𝑋)) | ||
| Theorem | cygznlem3 21543* | A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛ℤ. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ (𝜑 → 𝐺 ≃𝑔 𝑌) | ||
| Theorem | cygzn 21544 | A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛ℤ, and an infinite cyclic group is isomorphic to ℤ / 0ℤ ≈ ℤ. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 𝑌) | ||
| Theorem | cygth 21545* | The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛ℤ, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ℤ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) | ||
| Theorem | cyggic 21546 | Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) | ||
| Theorem | frgpcyg 21547 | A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) ⇒ ⊢ (𝐼 ≼ 1o ↔ 𝐺 ∈ CycGrp) | ||
| Theorem | freshmansdream 21548 | For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋↑𝑃) + (𝑌↑𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝑃 = (chr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝑌)) = ((𝑃 ↑ 𝑋) + (𝑃 ↑ 𝑌))) | ||
| Theorem | frobrhm 21549* | In a commutative ring with prime characteristic, the Frobenius function 𝐹 is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (chr‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑃 ↑ 𝑥)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑅)) | ||
| Theorem | cnmsgnsubg 21550 | The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ {1, -1} ∈ (SubGrp‘𝑀) | ||
| Theorem | cnmsgnbas 21551 | The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ {1, -1} = (Base‘𝑈) | ||
| Theorem | cnmsgngrp 21552 | The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ 𝑈 ∈ Grp | ||
| Theorem | psgnghm 21553 | The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝐹 = (𝑆 ↾s dom 𝑁) & ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝑁 ∈ (𝐹 GrpHom 𝑈)) | ||
| Theorem | psgnghm2 21554 | The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈)) | ||
| Theorem | psgninv 21555 | The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑁‘◡𝐹) = (𝑁‘𝐹)) | ||
| Theorem | psgnco 21556 | Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) | ||
| Theorem | zrhpsgnmhm 21557 | Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) | ||
| Theorem | zrhpsgninv 21558 | The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) | ||
| Theorem | evpmss 21559 | Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ (pmEven‘𝐷) ⊆ 𝑃 | ||
| Theorem | psgnevpmb 21560 | A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) | ||
| Theorem | psgnodpm 21561 | A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) | ||
| Theorem | psgnevpm 21562 | A permutation which is even has sign 1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁‘𝐹) = 1) | ||
| Theorem | psgnodpmr 21563 | If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | zrhpsgnevpm 21564 | The sign of an even permutation embedded into a ring is the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → ((𝑌 ∘ 𝑆)‘𝐹) = 1 ) | ||
| Theorem | zrhpsgnodpm 21565 | The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) | ||
| Theorem | cofipsgn 21566 | Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | ||
| Theorem | zrhpsgnelbas 21567 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) | ||
| Theorem | zrhcopsgnelbas 21568 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) (Proof shortened by AV, 3-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) | ||
| Theorem | evpmodpmf1o 21569* | The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | pmtrodpm 21570 | A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | psgnfix1 21571* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) | ||
| Theorem | psgnfix2 21572* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) | ||
| Theorem | psgndiflemB 21573* | Lemma 1 for psgndif 21575. (Contributed by AV, 27-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈)))) | ||
| Theorem | psgndiflemA 21574* | Lemma 2 for psgndif 21575. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))) | ||
| Theorem | psgndif 21575* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) | ||
| Theorem | copsgndif 21576* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) | ||
| Syntax | crefld 21577 | Extend class notation with the field of real numbers. |
| class ℝfld | ||
| Definition | df-refld 21578 | The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ ℝfld = (ℂfld ↾s ℝ) | ||
| Theorem | rebase 21579 | The base of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ℝ = (Base‘ℝfld) | ||
| Theorem | remulg 21580 | The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑁(.g‘ℝfld)𝐴) = (𝑁 · 𝐴)) | ||
| Theorem | resubdrg 21581 | The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | ||
| Theorem | resubgval 21582 | Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ − = (-g‘ℝfld) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
| Theorem | replusg 21583 | The addition operation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ + = (+g‘ℝfld) | ||
| Theorem | remulr 21584 | The multiplication operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ · = (.r‘ℝfld) | ||
| Theorem | re0g 21585 | The zero element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ 0 = (0g‘ℝfld) | ||
| Theorem | re1r 21586 | The unity element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ 1 = (1r‘ℝfld) | ||
| Theorem | rele2 21587 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ≤ = (le‘ℝfld) | ||
| Theorem | relt 21588 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ < = (lt‘ℝfld) | ||
| Theorem | reds 21589 | The distance of the field of reals. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
| ⊢ (abs ∘ − ) = (dist‘ℝfld) | ||
| Theorem | redvr 21590 | The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴(/r‘ℝfld)𝐵) = (𝐴 / 𝐵)) | ||
| Theorem | retos 21591 | The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ℝfld ∈ Toset | ||
| Theorem | refld 21592 | The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ℝfld ∈ Field | ||
| Theorem | refldcj 21593 | The conjugation operation of the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ ∗ = (*𝑟‘ℝfld) | ||
| Theorem | resrng 21594 | The real numbers form a star ring. (Contributed by Thierry Arnoux, 19-Apr-2019.) (Proof shortened by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ ℝfld ∈ *-Ring | ||
| Theorem | regsumsupp 21595* | The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
| ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) | ||
| Theorem | rzgrp 21596 | The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) ⇒ ⊢ 𝑅 ∈ Grp | ||
| Syntax | cphl 21597 | Extend class notation with class of all pre-Hilbert spaces. |
| class PreHil | ||
| Syntax | cipf 21598 | Extend class notation with inner product function. |
| class ·if | ||
| Definition | df-phl 21599* | Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.) |
| ⊢ PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} | ||
| Definition | df-ipf 21600* | Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21624), while ·𝑖 only has closure (ipcl 21606). (Contributed by Mario Carneiro, 12-Aug-2015.) |
| ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |