| Metamath
Proof Explorer Theorem List (p. 216 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | znzrh 21501 | The ℤ ring homomorphism of ℤ/nℤ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) = (ℤRHom‘𝑌)) | ||
| Theorem | znbas 21502 | The base set of ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑅 = (ℤring ~QG (𝑆‘{𝑁})) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘𝑌)) | ||
| Theorem | zncrng 21503 | ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CRing) | ||
| Theorem | znzrh2 21504* | The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ∼ )) | ||
| Theorem | znzrhval 21505 | The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑆 = (RSpan‘ℤring) & ⊢ ∼ = (ℤring ~QG (𝑆‘{𝑁})) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) = [𝐴] ∼ ) | ||
| Theorem | znzrhfo 21506 | The ℤ ring homomorphism is a surjection onto ℤ/nℤ. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐿:ℤ–onto→𝐵) | ||
| Theorem | zncyg 21507 | The group ℤ / 𝑛ℤ is cyclic for all 𝑛 (including 𝑛 = 0). (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ CycGrp) | ||
| Theorem | zndvds 21508 | Express equality of equivalence classes in ℤ / 𝑛ℤ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿‘𝐴) = (𝐿‘𝐵) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | ||
| Theorem | zndvds0 21509 | Special case of zndvds 21508 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) = 0 ↔ 𝑁 ∥ 𝐴)) | ||
| Theorem | znf1o 21510 | The function 𝐹 enumerates all equivalence classes in ℤ/nℤ for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐹:𝑊–1-1-onto→𝐵) | ||
| Theorem | zzngim 21511 | The ℤ ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘0) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) | ||
| Theorem | znle2 21512 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → ≤ = ((𝐹 ∘ ≤ ) ∘ ◡𝐹)) | ||
| Theorem | znleval 21513 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴 ≤ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵)))) | ||
| Theorem | znleval2 21514 | The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≤ 𝐵 ↔ (◡𝐹‘𝐴) ≤ (◡𝐹‘𝐵))) | ||
| Theorem | zntoslem 21515 | Lemma for zntos 21516. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊) & ⊢ 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁)) & ⊢ ≤ = (le‘𝑌) & ⊢ 𝑋 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Toset) | ||
| Theorem | zntos 21516 | The ℤ/nℤ structure is a totally ordered set. (The order is not respected by the operations, except in the case 𝑁 = 0 when it coincides with the ordering on ℤ.) (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝑌 ∈ Toset) | ||
| Theorem | znhash 21517 | The ℤ/nℤ structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) | ||
| Theorem | znfi 21518 | The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) | ||
| Theorem | znfld 21519 | The ℤ/nℤ structure is a finite field when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℙ → 𝑌 ∈ Field) | ||
| Theorem | znidomb 21520 | The ℤ/nℤ structure is a domain (and hence a field) precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ)) | ||
| Theorem | znchr 21521 | Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (chr‘𝑌) = 𝑁) | ||
| Theorem | znunit 21522 | The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ) → ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1)) | ||
| Theorem | znunithash 21523 | The size of the unit group of ℤ/nℤ. (Contributed by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁)) | ||
| Theorem | znrrg 21524 | The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.) |
| ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝑈 = (Unit‘𝑌) & ⊢ 𝐸 = (RLReg‘𝑌) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐸 = 𝑈) | ||
| Theorem | cygznlem1 21525* | Lemma for cygzn 21529. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) ⇒ ⊢ ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿‘𝐾) = (𝐿‘𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋))) | ||
| Theorem | cygznlem2a 21526* | Lemma for cygzn 21529. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ (𝜑 → 𝐹:(Base‘𝑌)⟶𝐵) | ||
| Theorem | cygznlem2 21527* | Lemma for cygzn 21529. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝐹‘(𝐿‘𝑀)) = (𝑀 · 𝑋)) | ||
| Theorem | cygznlem3 21528* | A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛ℤ. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ · = (.g‘𝐺) & ⊢ 𝐿 = (ℤRHom‘𝑌) & ⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵} & ⊢ (𝜑 → 𝐺 ∈ CycGrp) & ⊢ (𝜑 → 𝑋 ∈ 𝐸) & ⊢ 𝐹 = ran (𝑚 ∈ ℤ ↦ 〈(𝐿‘𝑚), (𝑚 · 𝑋)〉) ⇒ ⊢ (𝜑 → 𝐺 ≃𝑔 𝑌) | ||
| Theorem | cygzn 21529 | A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛ℤ, and an infinite cyclic group is isomorphic to ℤ / 0ℤ ≈ ℤ. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0) & ⊢ 𝑌 = (ℤ/nℤ‘𝑁) ⇒ ⊢ (𝐺 ∈ CycGrp → 𝐺 ≃𝑔 𝑌) | ||
| Theorem | cygth 21530* | The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛ℤ, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ℤ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺 ≃𝑔 (ℤ/nℤ‘𝑛)) | ||
| Theorem | cyggic 21531 | Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐶 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺 ≃𝑔 𝐻 ↔ 𝐵 ≈ 𝐶)) | ||
| Theorem | frgpcyg 21532 | A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.) |
| ⊢ 𝐺 = (freeGrp‘𝐼) ⇒ ⊢ (𝐼 ≼ 1o ↔ 𝐺 ∈ CycGrp) | ||
| Theorem | freshmansdream 21533 | For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋↑𝑃) + (𝑌↑𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝑃 = (chr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝑌)) = ((𝑃 ↑ 𝑋) + (𝑃 ↑ 𝑌))) | ||
| Theorem | frobrhm 21534* | In a commutative ring with prime characteristic, the Frobenius function 𝐹 is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (chr‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑃 ↑ 𝑥)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑅)) | ||
| Theorem | cnmsgnsubg 21535 | The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ {1, -1} ∈ (SubGrp‘𝑀) | ||
| Theorem | cnmsgnbas 21536 | The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ {1, -1} = (Base‘𝑈) | ||
| Theorem | cnmsgngrp 21537 | The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ 𝑈 ∈ Grp | ||
| Theorem | psgnghm 21538 | The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝐹 = (𝑆 ↾s dom 𝑁) & ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝑁 ∈ (𝐹 GrpHom 𝑈)) | ||
| Theorem | psgnghm2 21539 | The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈)) | ||
| Theorem | psgninv 21540 | The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝑁‘◡𝐹) = (𝑁‘𝐹)) | ||
| Theorem | psgnco 21541 | Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (pmSgn‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) | ||
| Theorem | zrhpsgnmhm 21542 | Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) | ||
| Theorem | zrhpsgninv 21543 | The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) | ||
| Theorem | evpmss 21544 | Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ (pmEven‘𝐷) ⊆ 𝑃 | ||
| Theorem | psgnevpmb 21545 | A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) | ||
| Theorem | psgnodpm 21546 | A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) | ||
| Theorem | psgnevpm 21547 | A permutation which is even has sign 1. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁‘𝐹) = 1) | ||
| Theorem | psgnodpmr 21548 | If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | zrhpsgnevpm 21549 | The sign of an even permutation embedded into a ring is the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → ((𝑌 ∘ 𝑆)‘𝐹) = 1 ) | ||
| Theorem | zrhpsgnodpm 21550 | The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) | ||
| Theorem | cofipsgn 21551 | Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | ||
| Theorem | zrhpsgnelbas 21552 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) | ||
| Theorem | zrhcopsgnelbas 21553 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) (Proof shortened by AV, 3-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) | ||
| Theorem | evpmodpmf1o 21554* | The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | pmtrodpm 21555 | A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
| Theorem | psgnfix1 21556* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) | ||
| Theorem | psgnfix2 21557* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) | ||
| Theorem | psgndiflemB 21558* | Lemma 1 for psgndif 21560. (Contributed by AV, 27-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈)))) | ||
| Theorem | psgndiflemA 21559* | Lemma 2 for psgndif 21560. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))) | ||
| Theorem | psgndif 21560* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) | ||
| Theorem | copsgndif 21561* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) | ||
| Syntax | crefld 21562 | Extend class notation with the field of real numbers. |
| class ℝfld | ||
| Definition | df-refld 21563 | The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ ℝfld = (ℂfld ↾s ℝ) | ||
| Theorem | rebase 21564 | The base of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ℝ = (Base‘ℝfld) | ||
| Theorem | remulg 21565 | The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑁(.g‘ℝfld)𝐴) = (𝑁 · 𝐴)) | ||
| Theorem | resubdrg 21566 | The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | ||
| Theorem | resubgval 21567 | Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ − = (-g‘ℝfld) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
| Theorem | replusg 21568 | The addition operation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ + = (+g‘ℝfld) | ||
| Theorem | remulr 21569 | The multiplication operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ · = (.r‘ℝfld) | ||
| Theorem | re0g 21570 | The zero element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ 0 = (0g‘ℝfld) | ||
| Theorem | re1r 21571 | The unity element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ 1 = (1r‘ℝfld) | ||
| Theorem | rele2 21572 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ≤ = (le‘ℝfld) | ||
| Theorem | relt 21573 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ < = (lt‘ℝfld) | ||
| Theorem | reds 21574 | The distance of the field of reals. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
| ⊢ (abs ∘ − ) = (dist‘ℝfld) | ||
| Theorem | redvr 21575 | The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴(/r‘ℝfld)𝐵) = (𝐴 / 𝐵)) | ||
| Theorem | retos 21576 | The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ℝfld ∈ Toset | ||
| Theorem | refld 21577 | The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
| ⊢ ℝfld ∈ Field | ||
| Theorem | refldcj 21578 | The conjugation operation of the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ ∗ = (*𝑟‘ℝfld) | ||
| Theorem | resrng 21579 | The real numbers form a star ring. (Contributed by Thierry Arnoux, 19-Apr-2019.) (Proof shortened by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ ℝfld ∈ *-Ring | ||
| Theorem | regsumsupp 21580* | The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
| ⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) | ||
| Theorem | rzgrp 21581 | The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) ⇒ ⊢ 𝑅 ∈ Grp | ||
| Syntax | cphl 21582 | Extend class notation with class of all pre-Hilbert spaces. |
| class PreHil | ||
| Syntax | cipf 21583 | Extend class notation with inner product function. |
| class ·if | ||
| Definition | df-phl 21584* | Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.) |
| ⊢ PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} | ||
| Definition | df-ipf 21585* | Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 21609), while ·𝑖 only has closure (ipcl 21591). (Contributed by Mario Carneiro, 12-Aug-2015.) |
| ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | ||
| Theorem | isphl 21586* | The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) | ||
| Theorem | phllvec 21587 | A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | ||
| Theorem | phllmod 21588 | A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | ||
| Theorem | phlsrng 21589 | The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) | ||
| Theorem | phllmhm 21590* | The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) | ||
| Theorem | ipcl 21591 | Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) | ||
| Theorem | ipcj 21592 | Conjugate of an inner product in a pre-Hilbert space. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) | ||
| Theorem | iporthcom 21593 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) | ||
| Theorem | ip0l 21594 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) | ||
| Theorem | ip0r 21595 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 0 ) = 𝑍) | ||
| Theorem | ipeq0 21596 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) | ||
| Theorem | ipdir 21597 | Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) | ||
| Theorem | ipdi 21598 | Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) | ||
| Theorem | ip2di 21599 | Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) | ||
| Theorem | ipsubdir 21600 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |