![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dsmmval | Structured version Visualization version GIF version |
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
Ref | Expression |
---|---|
dsmmval.b | ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} |
Ref | Expression |
---|---|
dsmmval | ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | oveq12 7435 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅)) | |
3 | eqid 2728 | . . . . . . . . 9 ⊢ (𝑠Xs𝑟) = (𝑠Xs𝑟) | |
4 | vex 3477 | . . . . . . . . . 10 ⊢ 𝑠 ∈ V | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑠 ∈ V) |
6 | vex 3477 | . . . . . . . . . 10 ⊢ 𝑟 ∈ V | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 ∈ V) |
8 | eqid 2728 | . . . . . . . . 9 ⊢ (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟)) | |
9 | eqidd 2729 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑟) | |
10 | 3, 5, 7, 8, 9 | prdsbas 17446 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥))) |
11 | 2 | fveq2d 6906 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅))) |
12 | 10, 11 | eqtr3d 2770 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = (Base‘(𝑆Xs𝑅))) |
13 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
14 | 13 | dmeqd 5912 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅) |
15 | 13 | fveq1d 6904 | . . . . . . . . . . 11 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑟‘𝑥) = (𝑅‘𝑥)) |
16 | 15 | fveq2d 6906 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (0g‘(𝑟‘𝑥)) = (0g‘(𝑅‘𝑥))) |
17 | 16 | neeq2d 2998 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥)) ↔ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥)))) |
18 | 14, 17 | rabeqbidv 3448 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
19 | 18 | eleq1d 2814 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin)) |
20 | 12, 19 | rabeqbidv 3448 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) |
21 | dsmmval.b | . . . . . 6 ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} | |
22 | 20, 21 | eqtr4di 2786 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = 𝐵) |
23 | 2, 22 | oveq12d 7444 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵)) |
24 | df-dsmm 21673 | . . . 4 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
25 | ovex 7459 | . . . 4 ⊢ ((𝑆Xs𝑅) ↾s 𝐵) ∈ V | |
26 | 23, 24, 25 | ovmpoa 7582 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
27 | reldmdsmm 21674 | . . . . . . 7 ⊢ Rel dom ⊕m | |
28 | 27 | ovprc1 7465 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ∅) |
29 | ress0 17231 | . . . . . 6 ⊢ (∅ ↾s 𝐵) = ∅ | |
30 | 28, 29 | eqtr4di 2786 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = (∅ ↾s 𝐵)) |
31 | reldmprds 17437 | . . . . . . 7 ⊢ Rel dom Xs | |
32 | 31 | ovprc1 7465 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆Xs𝑅) = ∅) |
33 | 32 | oveq1d 7441 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵)) |
34 | 30, 33 | eqtr4d 2771 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
35 | 34 | adantr 479 | . . 3 ⊢ ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
36 | 26, 35 | pm2.61ian 810 | . 2 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
37 | 1, 36 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 {crab 3430 Vcvv 3473 ∅c0 4326 dom cdm 5682 ‘cfv 6553 (class class class)co 7426 Xcixp 8922 Fincfn 8970 Basecbs 17187 ↾s cress 17216 0gc0g 17428 Xscprds 17434 ⊕m cdsmm 21672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-hom 17264 df-cco 17265 df-prds 17436 df-dsmm 21673 |
This theorem is referenced by: dsmmbase 21676 dsmmval2 21677 |
Copyright terms: Public domain | W3C validator |