MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmval Structured version   Visualization version   GIF version

Theorem dsmmval 21280
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Hypothesis
Ref Expression
dsmmval.b 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
Assertion
Ref Expression
dsmmval (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Distinct variable groups:   𝑆,𝑓,𝑥   𝑅,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem dsmmval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝑅𝑉𝑅 ∈ V)
2 oveq12 7414 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅))
3 eqid 2732 . . . . . . . . 9 (𝑠Xs𝑟) = (𝑠Xs𝑟)
4 vex 3478 . . . . . . . . . 10 𝑠 ∈ V
54a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 ∈ V)
6 vex 3478 . . . . . . . . . 10 𝑟 ∈ V
76a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 ∈ V)
8 eqid 2732 . . . . . . . . 9 (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟))
9 eqidd 2733 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑟)
103, 5, 7, 8, 9prdsbas 17399 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)))
112fveq2d 6892 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅)))
1210, 11eqtr3d 2774 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = (Base‘(𝑆Xs𝑅)))
13 simpr 485 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
1413dmeqd 5903 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
1513fveq1d 6890 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
1615fveq2d 6892 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → (0g‘(𝑟𝑥)) = (0g‘(𝑅𝑥)))
1716neeq2d 3001 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥) ≠ (0g‘(𝑟𝑥)) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
1814, 17rabeqbidv 3449 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
1918eleq1d 2818 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2012, 19rabeqbidv 3449 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
21 dsmmval.b . . . . . 6 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
2220, 21eqtr4di 2790 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = 𝐵)
232, 22oveq12d 7423 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵))
24 df-dsmm 21278 . . . 4 m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
25 ovex 7438 . . . 4 ((𝑆Xs𝑅) ↾s 𝐵) ∈ V
2623, 24, 25ovmpoa 7559 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
27 reldmdsmm 21279 . . . . . . 7 Rel dom ⊕m
2827ovprc1 7444 . . . . . 6 𝑆 ∈ V → (𝑆m 𝑅) = ∅)
29 ress0 17184 . . . . . 6 (∅ ↾s 𝐵) = ∅
3028, 29eqtr4di 2790 . . . . 5 𝑆 ∈ V → (𝑆m 𝑅) = (∅ ↾s 𝐵))
31 reldmprds 17390 . . . . . . 7 Rel dom Xs
3231ovprc1 7444 . . . . . 6 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
3332oveq1d 7420 . . . . 5 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵))
3430, 33eqtr4d 2775 . . . 4 𝑆 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3534adantr 481 . . 3 ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3626, 35pm2.61ian 810 . 2 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
371, 36syl 17 1 (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  {crab 3432  Vcvv 3474  c0 4321  dom cdm 5675  cfv 6540  (class class class)co 7405  Xcixp 8887  Fincfn 8935  Basecbs 17140  s cress 17169  0gc0g 17381  Xscprds 17387  m cdsmm 21277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-prds 17389  df-dsmm 21278
This theorem is referenced by:  dsmmbase  21281  dsmmval2  21282
  Copyright terms: Public domain W3C validator