MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmval Structured version   Visualization version   GIF version

Theorem dsmmval 21156
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Hypothesis
Ref Expression
dsmmval.b 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
Assertion
Ref Expression
dsmmval (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Distinct variable groups:   𝑆,𝑓,𝑥   𝑅,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem dsmmval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3462 . 2 (𝑅𝑉𝑅 ∈ V)
2 oveq12 7367 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅))
3 eqid 2733 . . . . . . . . 9 (𝑠Xs𝑟) = (𝑠Xs𝑟)
4 vex 3448 . . . . . . . . . 10 𝑠 ∈ V
54a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 ∈ V)
6 vex 3448 . . . . . . . . . 10 𝑟 ∈ V
76a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 ∈ V)
8 eqid 2733 . . . . . . . . 9 (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟))
9 eqidd 2734 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑟)
103, 5, 7, 8, 9prdsbas 17344 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)))
112fveq2d 6847 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅)))
1210, 11eqtr3d 2775 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = (Base‘(𝑆Xs𝑅)))
13 simpr 486 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
1413dmeqd 5862 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
1513fveq1d 6845 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
1615fveq2d 6847 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → (0g‘(𝑟𝑥)) = (0g‘(𝑅𝑥)))
1716neeq2d 3001 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥) ≠ (0g‘(𝑟𝑥)) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
1814, 17rabeqbidv 3423 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
1918eleq1d 2819 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2012, 19rabeqbidv 3423 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
21 dsmmval.b . . . . . 6 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
2220, 21eqtr4di 2791 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = 𝐵)
232, 22oveq12d 7376 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵))
24 df-dsmm 21154 . . . 4 m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
25 ovex 7391 . . . 4 ((𝑆Xs𝑅) ↾s 𝐵) ∈ V
2623, 24, 25ovmpoa 7511 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
27 reldmdsmm 21155 . . . . . . 7 Rel dom ⊕m
2827ovprc1 7397 . . . . . 6 𝑆 ∈ V → (𝑆m 𝑅) = ∅)
29 ress0 17129 . . . . . 6 (∅ ↾s 𝐵) = ∅
3028, 29eqtr4di 2791 . . . . 5 𝑆 ∈ V → (𝑆m 𝑅) = (∅ ↾s 𝐵))
31 reldmprds 17335 . . . . . . 7 Rel dom Xs
3231ovprc1 7397 . . . . . 6 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
3332oveq1d 7373 . . . . 5 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵))
3430, 33eqtr4d 2776 . . . 4 𝑆 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3534adantr 482 . . 3 ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3626, 35pm2.61ian 811 . 2 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
371, 36syl 17 1 (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  {crab 3406  Vcvv 3444  c0 4283  dom cdm 5634  cfv 6497  (class class class)co 7358  Xcixp 8838  Fincfn 8886  Basecbs 17088  s cress 17117  0gc0g 17326  Xscprds 17332  m cdsmm 21153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-hom 17162  df-cco 17163  df-prds 17334  df-dsmm 21154
This theorem is referenced by:  dsmmbase  21157  dsmmval2  21158
  Copyright terms: Public domain W3C validator