![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dsmmval | Structured version Visualization version GIF version |
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
Ref | Expression |
---|---|
dsmmval.b | ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} |
Ref | Expression |
---|---|
dsmmval | ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3498 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | oveq12 7439 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅)) | |
3 | eqid 2734 | . . . . . . . . 9 ⊢ (𝑠Xs𝑟) = (𝑠Xs𝑟) | |
4 | vex 3481 | . . . . . . . . . 10 ⊢ 𝑠 ∈ V | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑠 ∈ V) |
6 | vex 3481 | . . . . . . . . . 10 ⊢ 𝑟 ∈ V | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 ∈ V) |
8 | eqid 2734 | . . . . . . . . 9 ⊢ (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟)) | |
9 | eqidd 2735 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑟) | |
10 | 3, 5, 7, 8, 9 | prdsbas 17503 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥))) |
11 | 2 | fveq2d 6910 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅))) |
12 | 10, 11 | eqtr3d 2776 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = (Base‘(𝑆Xs𝑅))) |
13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
14 | 13 | dmeqd 5918 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅) |
15 | 13 | fveq1d 6908 | . . . . . . . . . . 11 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑟‘𝑥) = (𝑅‘𝑥)) |
16 | 15 | fveq2d 6910 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (0g‘(𝑟‘𝑥)) = (0g‘(𝑅‘𝑥))) |
17 | 16 | neeq2d 2998 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥)) ↔ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥)))) |
18 | 14, 17 | rabeqbidv 3451 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
19 | 18 | eleq1d 2823 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin)) |
20 | 12, 19 | rabeqbidv 3451 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) |
21 | dsmmval.b | . . . . . 6 ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} | |
22 | 20, 21 | eqtr4di 2792 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = 𝐵) |
23 | 2, 22 | oveq12d 7448 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵)) |
24 | df-dsmm 21769 | . . . 4 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
25 | ovex 7463 | . . . 4 ⊢ ((𝑆Xs𝑅) ↾s 𝐵) ∈ V | |
26 | 23, 24, 25 | ovmpoa 7587 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
27 | reldmdsmm 21770 | . . . . . . 7 ⊢ Rel dom ⊕m | |
28 | 27 | ovprc1 7469 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ∅) |
29 | ress0 17288 | . . . . . 6 ⊢ (∅ ↾s 𝐵) = ∅ | |
30 | 28, 29 | eqtr4di 2792 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = (∅ ↾s 𝐵)) |
31 | reldmprds 17494 | . . . . . . 7 ⊢ Rel dom Xs | |
32 | 31 | ovprc1 7469 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆Xs𝑅) = ∅) |
33 | 32 | oveq1d 7445 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵)) |
34 | 30, 33 | eqtr4d 2777 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
35 | 34 | adantr 480 | . . 3 ⊢ ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
36 | 26, 35 | pm2.61ian 812 | . 2 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
37 | 1, 36 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 {crab 3432 Vcvv 3477 ∅c0 4338 dom cdm 5688 ‘cfv 6562 (class class class)co 7430 Xcixp 8935 Fincfn 8983 Basecbs 17244 ↾s cress 17273 0gc0g 17485 Xscprds 17491 ⊕m cdsmm 21768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-prds 17493 df-dsmm 21769 |
This theorem is referenced by: dsmmbase 21772 dsmmval2 21773 |
Copyright terms: Public domain | W3C validator |