| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dsmmval | Structured version Visualization version GIF version | ||
| Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| dsmmval.b | ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} |
| Ref | Expression |
|---|---|
| dsmmval | ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | oveq12 7414 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅)) | |
| 3 | eqid 2735 | . . . . . . . . 9 ⊢ (𝑠Xs𝑟) = (𝑠Xs𝑟) | |
| 4 | vex 3463 | . . . . . . . . . 10 ⊢ 𝑠 ∈ V | |
| 5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑠 ∈ V) |
| 6 | vex 3463 | . . . . . . . . . 10 ⊢ 𝑟 ∈ V | |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 ∈ V) |
| 8 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟)) | |
| 9 | eqidd 2736 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑟) | |
| 10 | 3, 5, 7, 8, 9 | prdsbas 17471 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥))) |
| 11 | 2 | fveq2d 6880 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅))) |
| 12 | 10, 11 | eqtr3d 2772 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = (Base‘(𝑆Xs𝑅))) |
| 13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
| 14 | 13 | dmeqd 5885 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅) |
| 15 | 13 | fveq1d 6878 | . . . . . . . . . . 11 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑟‘𝑥) = (𝑅‘𝑥)) |
| 16 | 15 | fveq2d 6880 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (0g‘(𝑟‘𝑥)) = (0g‘(𝑅‘𝑥))) |
| 17 | 16 | neeq2d 2992 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥)) ↔ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥)))) |
| 18 | 14, 17 | rabeqbidv 3434 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
| 19 | 18 | eleq1d 2819 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin)) |
| 20 | 12, 19 | rabeqbidv 3434 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) |
| 21 | dsmmval.b | . . . . . 6 ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} | |
| 22 | 20, 21 | eqtr4di 2788 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = 𝐵) |
| 23 | 2, 22 | oveq12d 7423 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵)) |
| 24 | df-dsmm 21692 | . . . 4 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
| 25 | ovex 7438 | . . . 4 ⊢ ((𝑆Xs𝑅) ↾s 𝐵) ∈ V | |
| 26 | 23, 24, 25 | ovmpoa 7562 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
| 27 | reldmdsmm 21693 | . . . . . . 7 ⊢ Rel dom ⊕m | |
| 28 | 27 | ovprc1 7444 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ∅) |
| 29 | ress0 17264 | . . . . . 6 ⊢ (∅ ↾s 𝐵) = ∅ | |
| 30 | 28, 29 | eqtr4di 2788 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = (∅ ↾s 𝐵)) |
| 31 | reldmprds 17462 | . . . . . . 7 ⊢ Rel dom Xs | |
| 32 | 31 | ovprc1 7444 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆Xs𝑅) = ∅) |
| 33 | 32 | oveq1d 7420 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵)) |
| 34 | 30, 33 | eqtr4d 2773 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
| 35 | 34 | adantr 480 | . . 3 ⊢ ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
| 36 | 26, 35 | pm2.61ian 811 | . 2 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
| 37 | 1, 36 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {crab 3415 Vcvv 3459 ∅c0 4308 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 Xcixp 8911 Fincfn 8959 Basecbs 17228 ↾s cress 17251 0gc0g 17453 Xscprds 17459 ⊕m cdsmm 21691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-prds 17461 df-dsmm 21692 |
| This theorem is referenced by: dsmmbase 21695 dsmmval2 21696 |
| Copyright terms: Public domain | W3C validator |