MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmval Structured version   Visualization version   GIF version

Theorem dsmmval 21754
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Hypothesis
Ref Expression
dsmmval.b 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
Assertion
Ref Expression
dsmmval (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Distinct variable groups:   𝑆,𝑓,𝑥   𝑅,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem dsmmval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3501 . 2 (𝑅𝑉𝑅 ∈ V)
2 oveq12 7440 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅))
3 eqid 2737 . . . . . . . . 9 (𝑠Xs𝑟) = (𝑠Xs𝑟)
4 vex 3484 . . . . . . . . . 10 𝑠 ∈ V
54a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 ∈ V)
6 vex 3484 . . . . . . . . . 10 𝑟 ∈ V
76a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 ∈ V)
8 eqid 2737 . . . . . . . . 9 (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟))
9 eqidd 2738 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑟)
103, 5, 7, 8, 9prdsbas 17502 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)))
112fveq2d 6910 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅)))
1210, 11eqtr3d 2779 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = (Base‘(𝑆Xs𝑅)))
13 simpr 484 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
1413dmeqd 5916 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
1513fveq1d 6908 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
1615fveq2d 6910 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → (0g‘(𝑟𝑥)) = (0g‘(𝑅𝑥)))
1716neeq2d 3001 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥) ≠ (0g‘(𝑟𝑥)) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
1814, 17rabeqbidv 3455 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
1918eleq1d 2826 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2012, 19rabeqbidv 3455 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
21 dsmmval.b . . . . . 6 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
2220, 21eqtr4di 2795 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = 𝐵)
232, 22oveq12d 7449 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵))
24 df-dsmm 21752 . . . 4 m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
25 ovex 7464 . . . 4 ((𝑆Xs𝑅) ↾s 𝐵) ∈ V
2623, 24, 25ovmpoa 7588 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
27 reldmdsmm 21753 . . . . . . 7 Rel dom ⊕m
2827ovprc1 7470 . . . . . 6 𝑆 ∈ V → (𝑆m 𝑅) = ∅)
29 ress0 17289 . . . . . 6 (∅ ↾s 𝐵) = ∅
3028, 29eqtr4di 2795 . . . . 5 𝑆 ∈ V → (𝑆m 𝑅) = (∅ ↾s 𝐵))
31 reldmprds 17493 . . . . . . 7 Rel dom Xs
3231ovprc1 7470 . . . . . 6 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
3332oveq1d 7446 . . . . 5 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵))
3430, 33eqtr4d 2780 . . . 4 𝑆 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3534adantr 480 . . 3 ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3626, 35pm2.61ian 812 . 2 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
371, 36syl 17 1 (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  c0 4333  dom cdm 5685  cfv 6561  (class class class)co 7431  Xcixp 8937  Fincfn 8985  Basecbs 17247  s cress 17274  0gc0g 17484  Xscprds 17490  m cdsmm 21751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-prds 17492  df-dsmm 21752
This theorem is referenced by:  dsmmbase  21755  dsmmval2  21756
  Copyright terms: Public domain W3C validator