![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dsmmval | Structured version Visualization version GIF version |
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
Ref | Expression |
---|---|
dsmmval.b | ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} |
Ref | Expression |
---|---|
dsmmval | ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | oveq12 7457 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅)) | |
3 | eqid 2740 | . . . . . . . . 9 ⊢ (𝑠Xs𝑟) = (𝑠Xs𝑟) | |
4 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑠 ∈ V | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑠 ∈ V) |
6 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑟 ∈ V | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 ∈ V) |
8 | eqid 2740 | . . . . . . . . 9 ⊢ (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟)) | |
9 | eqidd 2741 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑟) | |
10 | 3, 5, 7, 8, 9 | prdsbas 17517 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥))) |
11 | 2 | fveq2d 6924 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅))) |
12 | 10, 11 | eqtr3d 2782 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = (Base‘(𝑆Xs𝑅))) |
13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
14 | 13 | dmeqd 5930 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅) |
15 | 13 | fveq1d 6922 | . . . . . . . . . . 11 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑟‘𝑥) = (𝑅‘𝑥)) |
16 | 15 | fveq2d 6924 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (0g‘(𝑟‘𝑥)) = (0g‘(𝑅‘𝑥))) |
17 | 16 | neeq2d 3007 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥)) ↔ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥)))) |
18 | 14, 17 | rabeqbidv 3462 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
19 | 18 | eleq1d 2829 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin)) |
20 | 12, 19 | rabeqbidv 3462 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) |
21 | dsmmval.b | . . . . . 6 ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} | |
22 | 20, 21 | eqtr4di 2798 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = 𝐵) |
23 | 2, 22 | oveq12d 7466 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵)) |
24 | df-dsmm 21775 | . . . 4 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
25 | ovex 7481 | . . . 4 ⊢ ((𝑆Xs𝑅) ↾s 𝐵) ∈ V | |
26 | 23, 24, 25 | ovmpoa 7605 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
27 | reldmdsmm 21776 | . . . . . . 7 ⊢ Rel dom ⊕m | |
28 | 27 | ovprc1 7487 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ∅) |
29 | ress0 17302 | . . . . . 6 ⊢ (∅ ↾s 𝐵) = ∅ | |
30 | 28, 29 | eqtr4di 2798 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = (∅ ↾s 𝐵)) |
31 | reldmprds 17508 | . . . . . . 7 ⊢ Rel dom Xs | |
32 | 31 | ovprc1 7487 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆Xs𝑅) = ∅) |
33 | 32 | oveq1d 7463 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵)) |
34 | 30, 33 | eqtr4d 2783 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
35 | 34 | adantr 480 | . . 3 ⊢ ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
36 | 26, 35 | pm2.61ian 811 | . 2 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
37 | 1, 36 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 Vcvv 3488 ∅c0 4352 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Xcixp 8955 Fincfn 9003 Basecbs 17258 ↾s cress 17287 0gc0g 17499 Xscprds 17505 ⊕m cdsmm 21774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-prds 17507 df-dsmm 21775 |
This theorem is referenced by: dsmmbase 21778 dsmmval2 21779 |
Copyright terms: Public domain | W3C validator |