![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dsmmval | Structured version Visualization version GIF version |
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
Ref | Expression |
---|---|
dsmmval.b | ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} |
Ref | Expression |
---|---|
dsmmval | ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3488 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | oveq12 7423 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅)) | |
3 | eqid 2727 | . . . . . . . . 9 ⊢ (𝑠Xs𝑟) = (𝑠Xs𝑟) | |
4 | vex 3473 | . . . . . . . . . 10 ⊢ 𝑠 ∈ V | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑠 ∈ V) |
6 | vex 3473 | . . . . . . . . . 10 ⊢ 𝑟 ∈ V | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 ∈ V) |
8 | eqid 2727 | . . . . . . . . 9 ⊢ (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟)) | |
9 | eqidd 2728 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑟) | |
10 | 3, 5, 7, 8, 9 | prdsbas 17432 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥))) |
11 | 2 | fveq2d 6895 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅))) |
12 | 10, 11 | eqtr3d 2769 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) = (Base‘(𝑆Xs𝑅))) |
13 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) | |
14 | 13 | dmeqd 5902 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → dom 𝑟 = dom 𝑅) |
15 | 13 | fveq1d 6893 | . . . . . . . . . . 11 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑟‘𝑥) = (𝑅‘𝑥)) |
16 | 15 | fveq2d 6895 | . . . . . . . . . 10 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (0g‘(𝑟‘𝑥)) = (0g‘(𝑅‘𝑥))) |
17 | 16 | neeq2d 2996 | . . . . . . . . 9 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥)) ↔ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥)))) |
18 | 14, 17 | rabeqbidv 3444 | . . . . . . . 8 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))}) |
19 | 18 | eleq1d 2813 | . . . . . . 7 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin)) |
20 | 12, 19 | rabeqbidv 3444 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin}) |
21 | dsmmval.b | . . . . . 6 ⊢ 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑅‘𝑥))} ∈ Fin} | |
22 | 20, 21 | eqtr4di 2785 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin} = 𝐵) |
23 | 2, 22 | oveq12d 7432 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵)) |
24 | df-dsmm 21659 | . . . 4 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
25 | ovex 7447 | . . . 4 ⊢ ((𝑆Xs𝑅) ↾s 𝐵) ∈ V | |
26 | 23, 24, 25 | ovmpoa 7570 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
27 | reldmdsmm 21660 | . . . . . . 7 ⊢ Rel dom ⊕m | |
28 | 27 | ovprc1 7453 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ∅) |
29 | ress0 17217 | . . . . . 6 ⊢ (∅ ↾s 𝐵) = ∅ | |
30 | 28, 29 | eqtr4di 2785 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = (∅ ↾s 𝐵)) |
31 | reldmprds 17423 | . . . . . . 7 ⊢ Rel dom Xs | |
32 | 31 | ovprc1 7453 | . . . . . 6 ⊢ (¬ 𝑆 ∈ V → (𝑆Xs𝑅) = ∅) |
33 | 32 | oveq1d 7429 | . . . . 5 ⊢ (¬ 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵)) |
34 | 30, 33 | eqtr4d 2770 | . . . 4 ⊢ (¬ 𝑆 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
35 | 34 | adantr 480 | . . 3 ⊢ ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
36 | 26, 35 | pm2.61ian 811 | . 2 ⊢ (𝑅 ∈ V → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
37 | 1, 36 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑆 ⊕m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 {crab 3427 Vcvv 3469 ∅c0 4318 dom cdm 5672 ‘cfv 6542 (class class class)co 7414 Xcixp 8909 Fincfn 8957 Basecbs 17173 ↾s cress 17202 0gc0g 17414 Xscprds 17420 ⊕m cdsmm 21658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-prds 17422 df-dsmm 21659 |
This theorem is referenced by: dsmmbase 21662 dsmmval2 21663 |
Copyright terms: Public domain | W3C validator |