MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmmval Structured version   Visualization version   GIF version

Theorem dsmmval 20650
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Hypothesis
Ref Expression
dsmmval.b 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
Assertion
Ref Expression
dsmmval (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Distinct variable groups:   𝑆,𝑓,𝑥   𝑅,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem dsmmval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3416 . 2 (𝑅𝑉𝑅 ∈ V)
2 oveq12 7200 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑠Xs𝑟) = (𝑆Xs𝑅))
3 eqid 2736 . . . . . . . . 9 (𝑠Xs𝑟) = (𝑠Xs𝑟)
4 vex 3402 . . . . . . . . . 10 𝑠 ∈ V
54a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 ∈ V)
6 vex 3402 . . . . . . . . . 10 𝑟 ∈ V
76a1i 11 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 ∈ V)
8 eqid 2736 . . . . . . . . 9 (Base‘(𝑠Xs𝑟)) = (Base‘(𝑠Xs𝑟))
9 eqidd 2737 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑟)
103, 5, 7, 8, 9prdsbas 16916 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)))
112fveq2d 6699 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘(𝑠Xs𝑟)) = (Base‘(𝑆Xs𝑅)))
1210, 11eqtr3d 2773 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) = (Base‘(𝑆Xs𝑅)))
13 simpr 488 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
1413dmeqd 5759 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → dom 𝑟 = dom 𝑅)
1513fveq1d 6697 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟𝑥) = (𝑅𝑥))
1615fveq2d 6699 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → (0g‘(𝑟𝑥)) = (0g‘(𝑅𝑥)))
1716neeq2d 2992 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑓𝑥) ≠ (0g‘(𝑟𝑥)) ↔ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))))
1814, 17rabeqbidv 3386 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} = {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))})
1918eleq1d 2815 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → ({𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin ↔ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin))
2012, 19rabeqbidv 3386 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin})
21 dsmmval.b . . . . . 6 𝐵 = {𝑓 ∈ (Base‘(𝑆Xs𝑅)) ∣ {𝑥 ∈ dom 𝑅 ∣ (𝑓𝑥) ≠ (0g‘(𝑅𝑥))} ∈ Fin}
2220, 21eqtr4di 2789 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin} = 𝐵)
232, 22oveq12d 7209 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}) = ((𝑆Xs𝑅) ↾s 𝐵))
24 df-dsmm 20648 . . . 4 m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
25 ovex 7224 . . . 4 ((𝑆Xs𝑅) ↾s 𝐵) ∈ V
2623, 24, 25ovmpoa 7342 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
27 reldmdsmm 20649 . . . . . . 7 Rel dom ⊕m
2827ovprc1 7230 . . . . . 6 𝑆 ∈ V → (𝑆m 𝑅) = ∅)
29 ress0 16742 . . . . . 6 (∅ ↾s 𝐵) = ∅
3028, 29eqtr4di 2789 . . . . 5 𝑆 ∈ V → (𝑆m 𝑅) = (∅ ↾s 𝐵))
31 reldmprds 16907 . . . . . . 7 Rel dom Xs
3231ovprc1 7230 . . . . . 6 𝑆 ∈ V → (𝑆Xs𝑅) = ∅)
3332oveq1d 7206 . . . . 5 𝑆 ∈ V → ((𝑆Xs𝑅) ↾s 𝐵) = (∅ ↾s 𝐵))
3430, 33eqtr4d 2774 . . . 4 𝑆 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3534adantr 484 . . 3 ((¬ 𝑆 ∈ V ∧ 𝑅 ∈ V) → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
3626, 35pm2.61ian 812 . 2 (𝑅 ∈ V → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
371, 36syl 17 1 (𝑅𝑉 → (𝑆m 𝑅) = ((𝑆Xs𝑅) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2932  {crab 3055  Vcvv 3398  c0 4223  dom cdm 5536  cfv 6358  (class class class)co 7191  Xcixp 8556  Fincfn 8604  Basecbs 16666  s cress 16667  0gc0g 16898  Xscprds 16904  m cdsmm 20647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-hom 16773  df-cco 16774  df-prds 16906  df-dsmm 20648
This theorem is referenced by:  dsmmbase  20651  dsmmval2  20652
  Copyright terms: Public domain W3C validator