Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-edom Structured version   Visualization version   GIF version

Definition df-edom 32388
Description: Define Euclidean Domains. (Contributed by Thierry Arnoux, 22-Mar-2025.)
Assertion
Ref Expression
df-edom EDomn = {𝑑 ∈ IDomn ∣ [(EuclF‘𝑑) / 𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎𝑣𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏))))}
Distinct variable group:   𝑎,𝑏,𝑑,𝑒,𝑞,𝑟,𝑣

Detailed syntax breakdown of Definition df-edom
StepHypRef Expression
1 cedom 32387 . 2 class EDomn
2 ve . . . . . . . 8 setvar 𝑒
32cv 1540 . . . . . . 7 class 𝑒
43wfun 6537 . . . . . 6 wff Fun 𝑒
5 vv . . . . . . . . . 10 setvar 𝑣
65cv 1540 . . . . . . . . 9 class 𝑣
7 vd . . . . . . . . . . . 12 setvar 𝑑
87cv 1540 . . . . . . . . . . 11 class 𝑑
9 c0g 17384 . . . . . . . . . . 11 class 0g
108, 9cfv 6543 . . . . . . . . . 10 class (0g𝑑)
1110csn 4628 . . . . . . . . 9 class {(0g𝑑)}
126, 11cdif 3945 . . . . . . . 8 class (𝑣 ∖ {(0g𝑑)})
133, 12cima 5679 . . . . . . 7 class (𝑒 “ (𝑣 ∖ {(0g𝑑)}))
14 cc0 11109 . . . . . . . 8 class 0
15 cpnf 11244 . . . . . . . 8 class +∞
16 cico 13325 . . . . . . . 8 class [,)
1714, 15, 16co 7408 . . . . . . 7 class (0[,)+∞)
1813, 17wss 3948 . . . . . 6 wff (𝑒 “ (𝑣 ∖ {(0g𝑑)})) ⊆ (0[,)+∞)
19 va . . . . . . . . . . . . 13 setvar 𝑎
2019cv 1540 . . . . . . . . . . . 12 class 𝑎
21 vb . . . . . . . . . . . . . . 15 setvar 𝑏
2221cv 1540 . . . . . . . . . . . . . 14 class 𝑏
23 vq . . . . . . . . . . . . . . 15 setvar 𝑞
2423cv 1540 . . . . . . . . . . . . . 14 class 𝑞
25 cmulr 17197 . . . . . . . . . . . . . . 15 class .r
268, 25cfv 6543 . . . . . . . . . . . . . 14 class (.r𝑑)
2722, 24, 26co 7408 . . . . . . . . . . . . 13 class (𝑏(.r𝑑)𝑞)
28 vr . . . . . . . . . . . . . 14 setvar 𝑟
2928cv 1540 . . . . . . . . . . . . 13 class 𝑟
30 cplusg 17196 . . . . . . . . . . . . . 14 class +g
318, 30cfv 6543 . . . . . . . . . . . . 13 class (+g𝑑)
3227, 29, 31co 7408 . . . . . . . . . . . 12 class ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟)
3320, 32wceq 1541 . . . . . . . . . . 11 wff 𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟)
3429, 10wceq 1541 . . . . . . . . . . . 12 wff 𝑟 = (0g𝑑)
3529, 3cfv 6543 . . . . . . . . . . . . 13 class (𝑒𝑟)
3622, 3cfv 6543 . . . . . . . . . . . . 13 class (𝑒𝑏)
37 clt 11247 . . . . . . . . . . . . 13 class <
3835, 36, 37wbr 5148 . . . . . . . . . . . 12 wff (𝑒𝑟) < (𝑒𝑏)
3934, 38wo 845 . . . . . . . . . . 11 wff (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏))
4033, 39wa 396 . . . . . . . . . 10 wff (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏)))
4140, 28, 6wrex 3070 . . . . . . . . 9 wff 𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏)))
4241, 23, 6wrex 3070 . . . . . . . 8 wff 𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏)))
4342, 21, 12wral 3061 . . . . . . 7 wff 𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏)))
4443, 19, 6wral 3061 . . . . . 6 wff 𝑎𝑣𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏)))
454, 18, 44w3a 1087 . . . . 5 wff (Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎𝑣𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏))))
46 cbs 17143 . . . . . 6 class Base
478, 46cfv 6543 . . . . 5 class (Base‘𝑑)
4845, 5, 47wsbc 3777 . . . 4 wff [(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎𝑣𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏))))
49 ceuf 32383 . . . . 5 class EuclF
508, 49cfv 6543 . . . 4 class (EuclF‘𝑑)
5148, 2, 50wsbc 3777 . . 3 wff [(EuclF‘𝑑) / 𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎𝑣𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏))))
52 cidom 20896 . . 3 class IDomn
5351, 7, 52crab 3432 . 2 class {𝑑 ∈ IDomn ∣ [(EuclF‘𝑑) / 𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎𝑣𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏))))}
541, 53wceq 1541 1 wff EDomn = {𝑑 ∈ IDomn ∣ [(EuclF‘𝑑) / 𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎𝑣𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏))))}
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator