Step | Hyp | Ref
| Expression |
1 | | cedom 32387 |
. 2
class
EDomn |
2 | | ve |
. . . . . . . 8
setvar 𝑒 |
3 | 2 | cv 1540 |
. . . . . . 7
class 𝑒 |
4 | 3 | wfun 6537 |
. . . . . 6
wff Fun 𝑒 |
5 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
6 | 5 | cv 1540 |
. . . . . . . . 9
class 𝑣 |
7 | | vd |
. . . . . . . . . . . 12
setvar 𝑑 |
8 | 7 | cv 1540 |
. . . . . . . . . . 11
class 𝑑 |
9 | | c0g 17384 |
. . . . . . . . . . 11
class
0g |
10 | 8, 9 | cfv 6543 |
. . . . . . . . . 10
class
(0g‘𝑑) |
11 | 10 | csn 4628 |
. . . . . . . . 9
class
{(0g‘𝑑)} |
12 | 6, 11 | cdif 3945 |
. . . . . . . 8
class (𝑣 ∖
{(0g‘𝑑)}) |
13 | 3, 12 | cima 5679 |
. . . . . . 7
class (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) |
14 | | cc0 11109 |
. . . . . . . 8
class
0 |
15 | | cpnf 11244 |
. . . . . . . 8
class
+∞ |
16 | | cico 13325 |
. . . . . . . 8
class
[,) |
17 | 14, 15, 16 | co 7408 |
. . . . . . 7
class
(0[,)+∞) |
18 | 13, 17 | wss 3948 |
. . . . . 6
wff (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆
(0[,)+∞) |
19 | | va |
. . . . . . . . . . . . 13
setvar 𝑎 |
20 | 19 | cv 1540 |
. . . . . . . . . . . 12
class 𝑎 |
21 | | vb |
. . . . . . . . . . . . . . 15
setvar 𝑏 |
22 | 21 | cv 1540 |
. . . . . . . . . . . . . 14
class 𝑏 |
23 | | vq |
. . . . . . . . . . . . . . 15
setvar 𝑞 |
24 | 23 | cv 1540 |
. . . . . . . . . . . . . 14
class 𝑞 |
25 | | cmulr 17197 |
. . . . . . . . . . . . . . 15
class
.r |
26 | 8, 25 | cfv 6543 |
. . . . . . . . . . . . . 14
class
(.r‘𝑑) |
27 | 22, 24, 26 | co 7408 |
. . . . . . . . . . . . 13
class (𝑏(.r‘𝑑)𝑞) |
28 | | vr |
. . . . . . . . . . . . . 14
setvar 𝑟 |
29 | 28 | cv 1540 |
. . . . . . . . . . . . 13
class 𝑟 |
30 | | cplusg 17196 |
. . . . . . . . . . . . . 14
class
+g |
31 | 8, 30 | cfv 6543 |
. . . . . . . . . . . . 13
class
(+g‘𝑑) |
32 | 27, 29, 31 | co 7408 |
. . . . . . . . . . . 12
class ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) |
33 | 20, 32 | wceq 1541 |
. . . . . . . . . . 11
wff 𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) |
34 | 29, 10 | wceq 1541 |
. . . . . . . . . . . 12
wff 𝑟 = (0g‘𝑑) |
35 | 29, 3 | cfv 6543 |
. . . . . . . . . . . . 13
class (𝑒‘𝑟) |
36 | 22, 3 | cfv 6543 |
. . . . . . . . . . . . 13
class (𝑒‘𝑏) |
37 | | clt 11247 |
. . . . . . . . . . . . 13
class
< |
38 | 35, 36, 37 | wbr 5148 |
. . . . . . . . . . . 12
wff (𝑒‘𝑟) < (𝑒‘𝑏) |
39 | 34, 38 | wo 845 |
. . . . . . . . . . 11
wff (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏)) |
40 | 33, 39 | wa 396 |
. . . . . . . . . 10
wff (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))) |
41 | 40, 28, 6 | wrex 3070 |
. . . . . . . . 9
wff
∃𝑟 ∈
𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))) |
42 | 41, 23, 6 | wrex 3070 |
. . . . . . . 8
wff
∃𝑞 ∈
𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))) |
43 | 42, 21, 12 | wral 3061 |
. . . . . . 7
wff
∀𝑏 ∈
(𝑣 ∖
{(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))) |
44 | 43, 19, 6 | wral 3061 |
. . . . . 6
wff
∀𝑎 ∈
𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))) |
45 | 4, 18, 44 | w3a 1087 |
. . . . 5
wff (Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞)
∧ ∀𝑎 ∈
𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏)))) |
46 | | cbs 17143 |
. . . . . 6
class
Base |
47 | 8, 46 | cfv 6543 |
. . . . 5
class
(Base‘𝑑) |
48 | 45, 5, 47 | wsbc 3777 |
. . . 4
wff
[(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞)
∧ ∀𝑎 ∈
𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏)))) |
49 | | ceuf 32383 |
. . . . 5
class
EuclF |
50 | 8, 49 | cfv 6543 |
. . . 4
class
(EuclF‘𝑑) |
51 | 48, 2, 50 | wsbc 3777 |
. . 3
wff
[(EuclF‘𝑑) / 𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞)
∧ ∀𝑎 ∈
𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏)))) |
52 | | cidom 20896 |
. . 3
class
IDomn |
53 | 51, 7, 52 | crab 3432 |
. 2
class {𝑑 ∈ IDomn ∣
[(EuclF‘𝑑) /
𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞)
∧ ∀𝑎 ∈
𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))))} |
54 | 1, 53 | wceq 1541 |
1
wff EDomn =
{𝑑 ∈ IDomn ∣
[(EuclF‘𝑑) /
𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞)
∧ ∀𝑎 ∈
𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))))} |