Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zringidom Structured version   Visualization version   GIF version

Theorem zringidom 33515
Description: The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.)
Assertion
Ref Expression
zringidom ring ∈ IDomn

Proof of Theorem zringidom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringcrng 21390 . 2 ring ∈ CRing
2 zringnzr 21402 . . 3 ring ∈ NzRing
3 eldifi 4090 . . . . 5 (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ ℤ)
43ad2antrr 726 . . . . . . . . . 10 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℤ)
54zcnd 12615 . . . . . . . . 9 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℂ)
6 simplr 768 . . . . . . . . . 10 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℤ)
76zcnd 12615 . . . . . . . . 9 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℂ)
8 simpr 484 . . . . . . . . 9 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 · 𝑦) = 0)
9 mul0or 11794 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 · 𝑦) = 0 ↔ (𝑥 = 0 ∨ 𝑦 = 0)))
109biimpa 476 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0))
115, 7, 8, 10syl21anc 837 . . . . . . . 8 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0))
12 eldifsni 4750 . . . . . . . . . 10 (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ≠ 0)
1312ad2antrr 726 . . . . . . . . 9 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ≠ 0)
1413neneqd 2930 . . . . . . . 8 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → ¬ 𝑥 = 0)
1511, 14orcnd 878 . . . . . . 7 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 = 0)
1615ex 412 . . . . . 6 ((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) = 0 → 𝑦 = 0))
1716ralrimiva 3125 . . . . 5 (𝑥 ∈ (ℤ ∖ {0}) → ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0))
18 eqid 2729 . . . . . 6 (RLReg‘ℤring) = (RLReg‘ℤring)
19 zringbas 21395 . . . . . 6 ℤ = (Base‘ℤring)
20 zringmulr 21399 . . . . . 6 · = (.r‘ℤring)
21 zring0 21400 . . . . . 6 0 = (0g‘ℤring)
2218, 19, 20, 21isrrg 20618 . . . . 5 (𝑥 ∈ (RLReg‘ℤring) ↔ (𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0)))
233, 17, 22sylanbrc 583 . . . 4 (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ (RLReg‘ℤring))
2423ssriv 3947 . . 3 (ℤ ∖ {0}) ⊆ (RLReg‘ℤring)
2519, 18, 21isdomn2 20631 . . 3 (ℤring ∈ Domn ↔ (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) ⊆ (RLReg‘ℤring)))
262, 24, 25mpbir2an 711 . 2 ring ∈ Domn
27 isidom 20645 . 2 (ℤring ∈ IDomn ↔ (ℤring ∈ CRing ∧ ℤring ∈ Domn))
281, 26, 27mpbir2an 711 1 ring ∈ IDomn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3908  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   · cmul 11049  cz 12505  CRingccrg 20154  NzRingcnzr 20432  RLRegcrlreg 20611  Domncdomn 20612  IDomncidom 20613  ringczring 21388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-subg 19037  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-cnfld 21297  df-zring 21389
This theorem is referenced by:  zringpid  33516  zringfrac  33518
  Copyright terms: Public domain W3C validator