|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zringidom | Structured version Visualization version GIF version | ||
| Description: The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.) | 
| Ref | Expression | 
|---|---|
| zringidom | ⊢ ℤring ∈ IDomn | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zringcrng 21460 | . 2 ⊢ ℤring ∈ CRing | |
| 2 | zringnzr 21472 | . . 3 ⊢ ℤring ∈ NzRing | |
| 3 | eldifi 4130 | . . . . 5 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ ℤ) | |
| 4 | 3 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℤ) | 
| 5 | 4 | zcnd 12725 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℂ) | 
| 6 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℤ) | |
| 7 | 6 | zcnd 12725 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℂ) | 
| 8 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 · 𝑦) = 0) | |
| 9 | mul0or 11904 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 · 𝑦) = 0 ↔ (𝑥 = 0 ∨ 𝑦 = 0))) | |
| 10 | 9 | biimpa 476 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0)) | 
| 11 | 5, 7, 8, 10 | syl21anc 837 | . . . . . . . 8 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0)) | 
| 12 | eldifsni 4789 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ≠ 0) | |
| 13 | 12 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ≠ 0) | 
| 14 | 13 | neneqd 2944 | . . . . . . . 8 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → ¬ 𝑥 = 0) | 
| 15 | 11, 14 | orcnd 878 | . . . . . . 7 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 = 0) | 
| 16 | 15 | ex 412 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) = 0 → 𝑦 = 0)) | 
| 17 | 16 | ralrimiva 3145 | . . . . 5 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0)) | 
| 18 | eqid 2736 | . . . . . 6 ⊢ (RLReg‘ℤring) = (RLReg‘ℤring) | |
| 19 | zringbas 21465 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 20 | zringmulr 21469 | . . . . . 6 ⊢ · = (.r‘ℤring) | |
| 21 | zring0 21470 | . . . . . 6 ⊢ 0 = (0g‘ℤring) | |
| 22 | 18, 19, 20, 21 | isrrg 20699 | . . . . 5 ⊢ (𝑥 ∈ (RLReg‘ℤring) ↔ (𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0))) | 
| 23 | 3, 17, 22 | sylanbrc 583 | . . . 4 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ (RLReg‘ℤring)) | 
| 24 | 23 | ssriv 3986 | . . 3 ⊢ (ℤ ∖ {0}) ⊆ (RLReg‘ℤring) | 
| 25 | 19, 18, 21 | isdomn2 20712 | . . 3 ⊢ (ℤring ∈ Domn ↔ (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) ⊆ (RLReg‘ℤring))) | 
| 26 | 2, 24, 25 | mpbir2an 711 | . 2 ⊢ ℤring ∈ Domn | 
| 27 | isidom 20726 | . 2 ⊢ (ℤring ∈ IDomn ↔ (ℤring ∈ CRing ∧ ℤring ∈ Domn)) | |
| 28 | 1, 26, 27 | mpbir2an 711 | 1 ⊢ ℤring ∈ IDomn | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∖ cdif 3947 ⊆ wss 3950 {csn 4625 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 0cc0 11156 · cmul 11161 ℤcz 12615 CRingccrg 20232 NzRingcnzr 20513 RLRegcrlreg 20692 Domncdomn 20693 IDomncidom 20694 ℤringczring 21458 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-addf 11235 ax-mulf 11236 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-subg 19142 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-nzr 20514 df-subrng 20547 df-subrg 20571 df-rlreg 20695 df-domn 20696 df-idom 20697 df-cnfld 21366 df-zring 21459 | 
| This theorem is referenced by: zringpid 33581 zringfrac 33583 | 
| Copyright terms: Public domain | W3C validator |