| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zringidom | Structured version Visualization version GIF version | ||
| Description: The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| zringidom | ⊢ ℤring ∈ IDomn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringcrng 21358 | . 2 ⊢ ℤring ∈ CRing | |
| 2 | zringnzr 21370 | . . 3 ⊢ ℤring ∈ NzRing | |
| 3 | eldifi 4094 | . . . . 5 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ ℤ) | |
| 4 | 3 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℤ) |
| 5 | 4 | zcnd 12639 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℂ) |
| 6 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℤ) | |
| 7 | 6 | zcnd 12639 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℂ) |
| 8 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 · 𝑦) = 0) | |
| 9 | mul0or 11818 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 · 𝑦) = 0 ↔ (𝑥 = 0 ∨ 𝑦 = 0))) | |
| 10 | 9 | biimpa 476 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0)) |
| 11 | 5, 7, 8, 10 | syl21anc 837 | . . . . . . . 8 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0)) |
| 12 | eldifsni 4754 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ≠ 0) | |
| 13 | 12 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ≠ 0) |
| 14 | 13 | neneqd 2930 | . . . . . . . 8 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → ¬ 𝑥 = 0) |
| 15 | 11, 14 | orcnd 878 | . . . . . . 7 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 = 0) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) = 0 → 𝑦 = 0)) |
| 17 | 16 | ralrimiva 3125 | . . . . 5 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0)) |
| 18 | eqid 2729 | . . . . . 6 ⊢ (RLReg‘ℤring) = (RLReg‘ℤring) | |
| 19 | zringbas 21363 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 20 | zringmulr 21367 | . . . . . 6 ⊢ · = (.r‘ℤring) | |
| 21 | zring0 21368 | . . . . . 6 ⊢ 0 = (0g‘ℤring) | |
| 22 | 18, 19, 20, 21 | isrrg 20607 | . . . . 5 ⊢ (𝑥 ∈ (RLReg‘ℤring) ↔ (𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0))) |
| 23 | 3, 17, 22 | sylanbrc 583 | . . . 4 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ (RLReg‘ℤring)) |
| 24 | 23 | ssriv 3950 | . . 3 ⊢ (ℤ ∖ {0}) ⊆ (RLReg‘ℤring) |
| 25 | 19, 18, 21 | isdomn2 20620 | . . 3 ⊢ (ℤring ∈ Domn ↔ (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) ⊆ (RLReg‘ℤring))) |
| 26 | 2, 24, 25 | mpbir2an 711 | . 2 ⊢ ℤring ∈ Domn |
| 27 | isidom 20634 | . 2 ⊢ (ℤring ∈ IDomn ↔ (ℤring ∈ CRing ∧ ℤring ∈ Domn)) | |
| 28 | 1, 26, 27 | mpbir2an 711 | 1 ⊢ ℤring ∈ IDomn |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 · cmul 11073 ℤcz 12529 CRingccrg 20143 NzRingcnzr 20421 RLRegcrlreg 20600 Domncdomn 20601 IDomncidom 20602 ℤringczring 21356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-nzr 20422 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-domn 20604 df-idom 20605 df-cnfld 21265 df-zring 21357 |
| This theorem is referenced by: zringpid 33523 zringfrac 33525 |
| Copyright terms: Public domain | W3C validator |