![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zringidom | Structured version Visualization version GIF version |
Description: The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
zringidom | ⊢ ℤring ∈ IDomn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringcrng 21477 | . 2 ⊢ ℤring ∈ CRing | |
2 | zringnzr 21489 | . . 3 ⊢ ℤring ∈ NzRing | |
3 | eldifi 4141 | . . . . 5 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ ℤ) | |
4 | 3 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℤ) |
5 | 4 | zcnd 12721 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℂ) |
6 | simplr 769 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℤ) | |
7 | 6 | zcnd 12721 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℂ) |
8 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 · 𝑦) = 0) | |
9 | mul0or 11901 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 · 𝑦) = 0 ↔ (𝑥 = 0 ∨ 𝑦 = 0))) | |
10 | 9 | biimpa 476 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0)) |
11 | 5, 7, 8, 10 | syl21anc 838 | . . . . . . . 8 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0)) |
12 | eldifsni 4795 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ≠ 0) | |
13 | 12 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ≠ 0) |
14 | 13 | neneqd 2943 | . . . . . . . 8 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → ¬ 𝑥 = 0) |
15 | 11, 14 | orcnd 878 | . . . . . . 7 ⊢ (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 = 0) |
16 | 15 | ex 412 | . . . . . 6 ⊢ ((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) = 0 → 𝑦 = 0)) |
17 | 16 | ralrimiva 3144 | . . . . 5 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0)) |
18 | eqid 2735 | . . . . . 6 ⊢ (RLReg‘ℤring) = (RLReg‘ℤring) | |
19 | zringbas 21482 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
20 | zringmulr 21486 | . . . . . 6 ⊢ · = (.r‘ℤring) | |
21 | zring0 21487 | . . . . . 6 ⊢ 0 = (0g‘ℤring) | |
22 | 18, 19, 20, 21 | isrrg 20715 | . . . . 5 ⊢ (𝑥 ∈ (RLReg‘ℤring) ↔ (𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0))) |
23 | 3, 17, 22 | sylanbrc 583 | . . . 4 ⊢ (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ (RLReg‘ℤring)) |
24 | 23 | ssriv 3999 | . . 3 ⊢ (ℤ ∖ {0}) ⊆ (RLReg‘ℤring) |
25 | 19, 18, 21 | isdomn2 20728 | . . 3 ⊢ (ℤring ∈ Domn ↔ (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) ⊆ (RLReg‘ℤring))) |
26 | 2, 24, 25 | mpbir2an 711 | . 2 ⊢ ℤring ∈ Domn |
27 | isidom 20742 | . 2 ⊢ (ℤring ∈ IDomn ↔ (ℤring ∈ CRing ∧ ℤring ∈ Domn)) | |
28 | 1, 26, 27 | mpbir2an 711 | 1 ⊢ ℤring ∈ IDomn |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 · cmul 11158 ℤcz 12611 CRingccrg 20252 NzRingcnzr 20529 RLRegcrlreg 20708 Domncdomn 20709 IDomncidom 20710 ℤringczring 21475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-subg 19154 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-nzr 20530 df-subrng 20563 df-subrg 20587 df-rlreg 20711 df-domn 20712 df-idom 20713 df-cnfld 21383 df-zring 21476 |
This theorem is referenced by: zringpid 33560 zringfrac 33562 |
Copyright terms: Public domain | W3C validator |