Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zringidom Structured version   Visualization version   GIF version

Theorem zringidom 33489
Description: The ring of integers is an integral domain. (Contributed by Thierry Arnoux, 4-May-2025.)
Assertion
Ref Expression
zringidom ring ∈ IDomn

Proof of Theorem zringidom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringcrng 21355 . 2 ring ∈ CRing
2 zringnzr 21367 . . 3 ring ∈ NzRing
3 eldifi 4082 . . . . 5 (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ ℤ)
43ad2antrr 726 . . . . . . . . . 10 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℤ)
54zcnd 12581 . . . . . . . . 9 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ∈ ℂ)
6 simplr 768 . . . . . . . . . 10 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℤ)
76zcnd 12581 . . . . . . . . 9 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 ∈ ℂ)
8 simpr 484 . . . . . . . . 9 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 · 𝑦) = 0)
9 mul0or 11760 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 · 𝑦) = 0 ↔ (𝑥 = 0 ∨ 𝑦 = 0)))
109biimpa 476 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0))
115, 7, 8, 10syl21anc 837 . . . . . . . 8 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → (𝑥 = 0 ∨ 𝑦 = 0))
12 eldifsni 4741 . . . . . . . . . 10 (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ≠ 0)
1312ad2antrr 726 . . . . . . . . 9 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑥 ≠ 0)
1413neneqd 2930 . . . . . . . 8 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → ¬ 𝑥 = 0)
1511, 14orcnd 878 . . . . . . 7 (((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) ∧ (𝑥 · 𝑦) = 0) → 𝑦 = 0)
1615ex 412 . . . . . 6 ((𝑥 ∈ (ℤ ∖ {0}) ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) = 0 → 𝑦 = 0))
1716ralrimiva 3121 . . . . 5 (𝑥 ∈ (ℤ ∖ {0}) → ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0))
18 eqid 2729 . . . . . 6 (RLReg‘ℤring) = (RLReg‘ℤring)
19 zringbas 21360 . . . . . 6 ℤ = (Base‘ℤring)
20 zringmulr 21364 . . . . . 6 · = (.r‘ℤring)
21 zring0 21365 . . . . . 6 0 = (0g‘ℤring)
2218, 19, 20, 21isrrg 20583 . . . . 5 (𝑥 ∈ (RLReg‘ℤring) ↔ (𝑥 ∈ ℤ ∧ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 0 → 𝑦 = 0)))
233, 17, 22sylanbrc 583 . . . 4 (𝑥 ∈ (ℤ ∖ {0}) → 𝑥 ∈ (RLReg‘ℤring))
2423ssriv 3939 . . 3 (ℤ ∖ {0}) ⊆ (RLReg‘ℤring)
2519, 18, 21isdomn2 20596 . . 3 (ℤring ∈ Domn ↔ (ℤring ∈ NzRing ∧ (ℤ ∖ {0}) ⊆ (RLReg‘ℤring)))
262, 24, 25mpbir2an 711 . 2 ring ∈ Domn
27 isidom 20610 . 2 (ℤring ∈ IDomn ↔ (ℤring ∈ CRing ∧ ℤring ∈ Domn))
281, 26, 27mpbir2an 711 1 ring ∈ IDomn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3900  wss 3903  {csn 4577  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009   · cmul 11014  cz 12471  CRingccrg 20119  NzRingcnzr 20397  RLRegcrlreg 20576  Domncdomn 20577  IDomncidom 20578  ringczring 21353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-subg 19002  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-cnfld 21262  df-zring 21354
This theorem is referenced by:  zringpid  33490  zringfrac  33492
  Copyright terms: Public domain W3C validator