| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ef | Structured version Visualization version GIF version | ||
| Description: Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 16115. (Contributed by NM, 14-Mar-2005.) |
| Ref | Expression |
|---|---|
| df-ef | ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ce 16097 | . 2 class exp | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cc 11153 | . . 3 class ℂ | |
| 4 | cn0 12526 | . . . 4 class ℕ0 | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vk | . . . . . . 7 setvar 𝑘 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑘 |
| 8 | cexp 14102 | . . . . . 6 class ↑ | |
| 9 | 5, 7, 8 | co 7431 | . . . . 5 class (𝑥↑𝑘) |
| 10 | cfa 14312 | . . . . . 6 class ! | |
| 11 | 7, 10 | cfv 6561 | . . . . 5 class (!‘𝑘) |
| 12 | cdiv 11920 | . . . . 5 class / | |
| 13 | 9, 11, 12 | co 7431 | . . . 4 class ((𝑥↑𝑘) / (!‘𝑘)) |
| 14 | 4, 13, 6 | csu 15722 | . . 3 class Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘)) |
| 15 | 2, 3, 14 | cmpt 5225 | . 2 class (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) |
| 16 | 1, 15 | wceq 1540 | 1 wff exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: efval 16115 eff 16117 |
| Copyright terms: Public domain | W3C validator |