MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ef Structured version   Visualization version   GIF version

Definition df-ef 15758
Description: Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 15770. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
df-ef exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
Distinct variable group:   𝑥,𝑘

Detailed syntax breakdown of Definition df-ef
StepHypRef Expression
1 ce 15752 . 2 class exp
2 vx . . 3 setvar 𝑥
3 cc 10853 . . 3 class
4 cn0 12216 . . . 4 class 0
52cv 1540 . . . . . 6 class 𝑥
6 vk . . . . . . 7 setvar 𝑘
76cv 1540 . . . . . 6 class 𝑘
8 cexp 13763 . . . . . 6 class
95, 7, 8co 7268 . . . . 5 class (𝑥𝑘)
10 cfa 13968 . . . . . 6 class !
117, 10cfv 6430 . . . . 5 class (!‘𝑘)
12 cdiv 11615 . . . . 5 class /
139, 11, 12co 7268 . . . 4 class ((𝑥𝑘) / (!‘𝑘))
144, 13, 6csu 15378 . . 3 class Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘))
152, 3, 14cmpt 5161 . 2 class (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
161, 15wceq 1541 1 wff exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
Colors of variables: wff setvar class
This definition is referenced by:  efval  15770  eff  15772
  Copyright terms: Public domain W3C validator