| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efval | Structured version Visualization version GIF version | ||
| Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| efval | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7410 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥↑𝑘) = (𝐴↑𝑘)) | |
| 2 | 1 | oveq1d 7418 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥↑𝑘) / (!‘𝑘)) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 3 | 2 | sumeq2sdv 15717 | . 2 ⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| 4 | df-ef 16081 | . 2 ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | |
| 5 | sumex 15702 | . 2 ⊢ Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6985 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 / cdiv 11892 ℕ0cn0 12499 ↑cexp 14077 !cfa 14289 Σcsu 15700 expce 16075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-seq 14018 df-sum 15701 df-ef 16081 |
| This theorem is referenced by: esum 16094 efval2 16098 efcvg 16099 reefcl 16101 efaddlem 16107 eflegeo 16137 subfaclim 35156 |
| Copyright terms: Public domain | W3C validator |