| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efval | Structured version Visualization version GIF version | ||
| Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| efval | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7360 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥↑𝑘) = (𝐴↑𝑘)) | |
| 2 | 1 | oveq1d 7368 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥↑𝑘) / (!‘𝑘)) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 3 | 2 | sumeq2sdv 15628 | . 2 ⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| 4 | df-ef 15992 | . 2 ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | |
| 5 | sumex 15613 | . 2 ⊢ Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6934 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 / cdiv 11795 ℕ0cn0 12402 ↑cexp 13986 !cfa 14198 Σcsu 15611 expce 15986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seq 13927 df-sum 15612 df-ef 15992 |
| This theorem is referenced by: esum 16005 efval2 16009 efcvg 16010 reefcl 16012 efaddlem 16018 eflegeo 16048 subfaclim 35160 |
| Copyright terms: Public domain | W3C validator |