MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efval Structured version   Visualization version   GIF version

Theorem efval 15988
Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
efval (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem efval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7359 . . . 4 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
21oveq1d 7367 . . 3 (𝑥 = 𝐴 → ((𝑥𝑘) / (!‘𝑘)) = ((𝐴𝑘) / (!‘𝑘)))
32sumeq2sdv 15612 . 2 (𝑥 = 𝐴 → Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
4 df-ef 15976 . 2 exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
5 sumex 15597 . 2 Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)) ∈ V
63, 4, 5fvmpt 6935 1 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  cc 11011   / cdiv 11781  0cn0 12388  cexp 13970  !cfa 14182  Σcsu 15595  expce 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-seq 13911  df-sum 15596  df-ef 15976
This theorem is referenced by:  esum  15989  efval2  15993  efcvg  15994  reefcl  15996  efaddlem  16002  eflegeo  16032  subfaclim  35253
  Copyright terms: Public domain W3C validator