MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efval Structured version   Visualization version   GIF version

Theorem efval 16111
Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
efval (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem efval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7437 . . . 4 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
21oveq1d 7445 . . 3 (𝑥 = 𝐴 → ((𝑥𝑘) / (!‘𝑘)) = ((𝐴𝑘) / (!‘𝑘)))
32sumeq2sdv 15735 . 2 (𝑥 = 𝐴 → Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
4 df-ef 16099 . 2 exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
5 sumex 15720 . 2 Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)) ∈ V
63, 4, 5fvmpt 7015 1 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  cc 11150   / cdiv 11917  0cn0 12523  cexp 14098  !cfa 14308  Σcsu 15718  expce 16093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-seq 14039  df-sum 15719  df-ef 16099
This theorem is referenced by:  esum  16112  efval2  16116  efcvg  16117  reefcl  16119  efaddlem  16125  eflegeo  16153  subfaclim  35172
  Copyright terms: Public domain W3C validator