| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efval | Structured version Visualization version GIF version | ||
| Description: Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| Ref | Expression |
|---|---|
| efval | ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥↑𝑘) = (𝐴↑𝑘)) | |
| 2 | 1 | oveq1d 7361 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥↑𝑘) / (!‘𝑘)) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 3 | 2 | sumeq2sdv 15607 | . 2 ⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| 4 | df-ef 15971 | . 2 ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | |
| 5 | sumex 15592 | . 2 ⊢ Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6929 | 1 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 / cdiv 11771 ℕ0cn0 12378 ↑cexp 13965 !cfa 14177 Σcsu 15590 expce 15965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seq 13906 df-sum 15591 df-ef 15971 |
| This theorem is referenced by: esum 15984 efval2 15988 efcvg 15989 reefcl 15991 efaddlem 15997 eflegeo 16027 subfaclim 35220 |
| Copyright terms: Public domain | W3C validator |