MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-e Structured version   Visualization version   GIF version

Definition df-e 15787
Description: Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
df-e e = (exp‘1)

Detailed syntax breakdown of Definition df-e
StepHypRef Expression
1 ceu 15781 . 2 class e
2 c1 10881 . . 3 class 1
3 ce 15780 . . 3 class exp
42, 3cfv 6437 . 2 class (exp‘1)
51, 4wceq 1539 1 wff e = (exp‘1)
Colors of variables: wff setvar class
This definition is referenced by:  esum  15799  ere  15807  ege2le3  15808  efzval  15820  loge  25751  logdivlti  25784  pntpbnd1a  26742  ex-co  28811  subfaclim  33159
  Copyright terms: Public domain W3C validator