Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-e | Structured version Visualization version GIF version |
Description: Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.) |
Ref | Expression |
---|---|
df-e | ⊢ e = (exp‘1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceu 15781 | . 2 class e | |
2 | c1 10881 | . . 3 class 1 | |
3 | ce 15780 | . . 3 class exp | |
4 | 2, 3 | cfv 6437 | . 2 class (exp‘1) |
5 | 1, 4 | wceq 1539 | 1 wff e = (exp‘1) |
Colors of variables: wff setvar class |
This definition is referenced by: esum 15799 ere 15807 ege2le3 15808 efzval 15820 loge 25751 logdivlti 25784 pntpbnd1a 26742 ex-co 28811 subfaclim 33159 |
Copyright terms: Public domain | W3C validator |