MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-e Structured version   Visualization version   GIF version

Definition df-e 15706
Description: Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
df-e e = (exp‘1)

Detailed syntax breakdown of Definition df-e
StepHypRef Expression
1 ceu 15700 . 2 class e
2 c1 10803 . . 3 class 1
3 ce 15699 . . 3 class exp
42, 3cfv 6418 . 2 class (exp‘1)
51, 4wceq 1539 1 wff e = (exp‘1)
Colors of variables: wff setvar class
This definition is referenced by:  esum  15718  ere  15726  ege2le3  15727  efzval  15739  loge  25647  logdivlti  25680  pntpbnd1a  26638  ex-co  28703  subfaclim  33050
  Copyright terms: Public domain W3C validator