| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-e | Structured version Visualization version GIF version | ||
| Description: Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.) |
| Ref | Expression |
|---|---|
| df-e | ⊢ e = (exp‘1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceu 16098 | . 2 class e | |
| 2 | c1 11156 | . . 3 class 1 | |
| 3 | ce 16097 | . . 3 class exp | |
| 4 | 2, 3 | cfv 6561 | . 2 class (exp‘1) |
| 5 | 1, 4 | wceq 1540 | 1 wff e = (exp‘1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: esum 16116 ere 16125 ege2le3 16126 efzval 16138 loge 26628 logdivlti 26662 pntpbnd1a 27629 ex-co 30457 subfaclim 35193 |
| Copyright terms: Public domain | W3C validator |