| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-e | Structured version Visualization version GIF version | ||
| Description: Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.) |
| Ref | Expression |
|---|---|
| df-e | ⊢ e = (exp‘1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceu 15969 | . 2 class e | |
| 2 | c1 11007 | . . 3 class 1 | |
| 3 | ce 15968 | . . 3 class exp | |
| 4 | 2, 3 | cfv 6481 | . 2 class (exp‘1) |
| 5 | 1, 4 | wceq 1541 | 1 wff e = (exp‘1) |
| Colors of variables: wff setvar class |
| This definition is referenced by: esum 15987 ere 15996 ege2le3 15997 efzval 16011 loge 26523 logdivlti 26557 pntpbnd1a 27524 ex-co 30416 subfaclim 35230 lamberte 46925 |
| Copyright terms: Public domain | W3C validator |