| Metamath
Proof Explorer Theorem List (p. 161 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | efne0d 16001 | The exponential of a complex number is nonzero, deduction form. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Revised by SN, 25-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≠ 0) | ||
| Theorem | efne0 16002 | The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Proof shortened by TA, 14-Nov-2025.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
| Theorem | efne0OLD 16003 | Obsolete version of efne0 16002 as of 14-Nov-2025. The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
| Theorem | efneg 16004 | The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) | ||
| Theorem | eff2 16005 | The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) |
| ⊢ exp:ℂ⟶(ℂ ∖ {0}) | ||
| Theorem | efsub 16006 | Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) | ||
| Theorem | efexp 16007 | The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) | ||
| Theorem | efzval 16008 | Value of the exponential function for integers. Special case of efval 15983. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) | ||
| Theorem | efgt0 16009 | The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ → 0 < (exp‘𝐴)) | ||
| Theorem | rpefcl 16010 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+) | ||
| Theorem | rpefcld 16011 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ+) | ||
| Theorem | eftlcvg 16012* | The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | eftlcl 16013* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) | ||
| Theorem | reeftlcl 16014* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) | ||
| Theorem | eftlub 16015* | An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) | ||
| Theorem | efsep 16016* | Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) | ||
| Theorem | effsumlt 16017* | The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) | ||
| Theorem | eft0val 16018 | The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | ||
| Theorem | ef4p 16019* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
| Theorem | efgt1p2 16020 | The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) | ||
| Theorem | efgt1p 16021 | The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) | ||
| Theorem | efgt1 16022 | The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴)) | ||
| Theorem | eflt 16023 | The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) | ||
| Theorem | efle 16024 | The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) | ||
| Theorem | reef11 16025 | The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Mario Carneiro, 11-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | reeff1 16026 | The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | ||
| Theorem | eflegeo 16027 | The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) | ||
| Theorem | sinval 16028 | Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | ||
| Theorem | cosval 16029 | Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | ||
| Theorem | sinf 16030 | Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ sin:ℂ⟶ℂ | ||
| Theorem | cosf 16031 | Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ cos:ℂ⟶ℂ | ||
| Theorem | sincl 16032 | Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | ||
| Theorem | coscl 16033 | Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | ||
| Theorem | tanval 16034 | Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | ||
| Theorem | tancl 16035 | The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ) | ||
| Theorem | sincld 16036 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) | ||
| Theorem | coscld 16037 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) | ||
| Theorem | tancld 16038 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) | ||
| Theorem | tanval2 16039 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) | ||
| Theorem | tanval3 16040 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1)))) | ||
| Theorem | resinval 16041 | The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | ||
| Theorem | recosval 16042 | The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) | ||
| Theorem | efi4p 16043* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
| Theorem | resin4p 16044* | Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
| Theorem | recos4p 16045* | Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
| Theorem | resincl 16046 | The sine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | ||
| Theorem | recoscl 16047 | The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retancl 16048 | The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | resincld 16049 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) | ||
| Theorem | recoscld 16050 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retancld 16051 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | sinneg 16052 | The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | ||
| Theorem | cosneg 16053 | The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | ||
| Theorem | tanneg 16054 | The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) | ||
| Theorem | sin0 16055 | Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
| ⊢ (sin‘0) = 0 | ||
| Theorem | cos0 16056 | Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (cos‘0) = 1 | ||
| Theorem | tan0 16057 | The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.) |
| ⊢ (tan‘0) = 0 | ||
| Theorem | efival 16058 | The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | ||
| Theorem | efmival 16059 | The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) | ||
| Theorem | sinhval 16060 | Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | ||
| Theorem | coshval 16061 | Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) | ||
| Theorem | resinhcl 16062 | The hyperbolic sine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) ∈ ℝ) | ||
| Theorem | rpcoshcl 16063 | The hyperbolic cosine of a real number is a positive real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | ||
| Theorem | recoshcl 16064 | The hyperbolic cosine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ) | ||
| Theorem | retanhcl 16065 | The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | ||
| Theorem | tanhlt1 16066 | The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | ||
| Theorem | tanhbnd 16067 | The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) | ||
| Theorem | efeul 16068 | Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · ((cos‘(ℑ‘𝐴)) + (i · (sin‘(ℑ‘𝐴)))))) | ||
| Theorem | efieq 16069 | The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵)))) | ||
| Theorem | sinadd 16070 | Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cosadd 16071 | Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | tanaddlem 16072 | A useful intermediate step in tanadd 16073 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1)) | ||
| Theorem | tanadd 16073 | Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) | ||
| Theorem | sinsub 16074 | Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cossub 16075 | Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | addsin 16076 | Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subsin 16077 | Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sinmul 16078 | Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 16071 and cossub 16075. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | cosmul 16079 | Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 16071 and cossub 16075. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | addcos 16080 | Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subcos 16081 | Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sincossq 16082 | Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | ||
| Theorem | sin2t 16083 | Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) | ||
| Theorem | cos2t 16084 | Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) | ||
| Theorem | cos2tsin 16085 | Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2)))) | ||
| Theorem | sinbnd 16086 | The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | ||
| Theorem | cosbnd 16087 | The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) | ||
| Theorem | sinbnd2 16088 | The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1)) | ||
| Theorem | cosbnd2 16089 | The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1)) | ||
| Theorem | ef01bndlem 16090* | Lemma for sin01bnd 16091 and cos01bnd 16092. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)) < ((𝐴↑4) / 6)) | ||
| Theorem | sin01bnd 16091 | Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | ||
| Theorem | cos01bnd 16092 | Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3)))) | ||
| Theorem | cos1bnd 16093 | Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3)) | ||
| Theorem | cos2bnd 16094 | Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9)) | ||
| Theorem | sinltx 16095 | The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (sin‘𝐴) < 𝐴) | ||
| Theorem | sin01gt0 16096 | The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
| ⊢ (𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴)) | ||
| Theorem | cos01gt0 16097 | The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴)) | ||
| Theorem | sin02gt0 16098 | The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴)) | ||
| Theorem | sincos1sgn 16099 | The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (0 < (sin‘1) ∧ 0 < (cos‘1)) | ||
| Theorem | sincos2sgn 16100 | The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.) |
| ⊢ (0 < (sin‘2) ∧ (cos‘2) < 0) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |