| Metamath
Proof Explorer Theorem List (p. 161 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eftval 16001* | The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) | ||
| Theorem | efcllem 16002* | Lemma for efcl 16007. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15808 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | ef0lem 16003* | The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) | ||
| Theorem | efval 16004* | Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | ||
| Theorem | esum 16005 | Value of Euler's constant e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.) |
| ⊢ e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘)) | ||
| Theorem | eff 16006 | Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
| ⊢ exp:ℂ⟶ℂ | ||
| Theorem | efcl 16007 | Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | ||
| Theorem | efcld 16008 | Closure law for the exponential function, deduction version. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℂ) | ||
| Theorem | efval2 16009* | Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | ||
| Theorem | efcvg 16010* | The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) | ||
| Theorem | efcvgfsum 16011* | Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) | ||
| Theorem | reefcl 16012 | The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | ||
| Theorem | reefcld 16013 | The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) | ||
| Theorem | ere 16014 | Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
| ⊢ e ∈ ℝ | ||
| Theorem | ege2le3 16015 | Lemma for egt2lt3 16133. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤ 3) | ||
| Theorem | ef0 16016 | Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (exp‘0) = 1 | ||
| Theorem | efcj 16017 | The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) | ||
| Theorem | efaddlem 16018* | Lemma for efadd 16019 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
| Theorem | efadd 16019 | Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
| Theorem | fprodefsum 16020* | Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)) | ||
| Theorem | efcan 16021 | Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) | ||
| Theorem | efne0d 16022 | The exponential of a complex number is nonzero, deduction form. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Revised by SN, 25-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≠ 0) | ||
| Theorem | efne0 16023 | The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Proof shortened by TA, 14-Nov-2025.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
| Theorem | efne0OLD 16024 | Obsolete version of efne0 16023 as of 14-Nov-2025. The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
| Theorem | efneg 16025 | The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) | ||
| Theorem | eff2 16026 | The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) |
| ⊢ exp:ℂ⟶(ℂ ∖ {0}) | ||
| Theorem | efsub 16027 | Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) | ||
| Theorem | efexp 16028 | The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) | ||
| Theorem | efzval 16029 | Value of the exponential function for integers. Special case of efval 16004. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) | ||
| Theorem | efgt0 16030 | The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ → 0 < (exp‘𝐴)) | ||
| Theorem | rpefcl 16031 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+) | ||
| Theorem | rpefcld 16032 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ+) | ||
| Theorem | eftlcvg 16033* | The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | eftlcl 16034* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) | ||
| Theorem | reeftlcl 16035* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) | ||
| Theorem | eftlub 16036* | An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) | ||
| Theorem | efsep 16037* | Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) | ||
| Theorem | effsumlt 16038* | The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) | ||
| Theorem | eft0val 16039 | The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | ||
| Theorem | ef4p 16040* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
| Theorem | efgt1p2 16041 | The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) | ||
| Theorem | efgt1p 16042 | The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) | ||
| Theorem | efgt1 16043 | The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴)) | ||
| Theorem | eflt 16044 | The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) | ||
| Theorem | efle 16045 | The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) | ||
| Theorem | reef11 16046 | The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Mario Carneiro, 11-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | reeff1 16047 | The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | ||
| Theorem | eflegeo 16048 | The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) | ||
| Theorem | sinval 16049 | Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | ||
| Theorem | cosval 16050 | Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | ||
| Theorem | sinf 16051 | Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ sin:ℂ⟶ℂ | ||
| Theorem | cosf 16052 | Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ cos:ℂ⟶ℂ | ||
| Theorem | sincl 16053 | Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | ||
| Theorem | coscl 16054 | Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | ||
| Theorem | tanval 16055 | Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | ||
| Theorem | tancl 16056 | The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ) | ||
| Theorem | sincld 16057 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) | ||
| Theorem | coscld 16058 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) | ||
| Theorem | tancld 16059 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) | ||
| Theorem | tanval2 16060 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (i · ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) | ||
| Theorem | tanval3 16061 | Express the tangent function directly in terms of exp. (Contributed by Mario Carneiro, 25-Feb-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2 · (i · 𝐴))) + 1) ≠ 0) → (tan‘𝐴) = (((exp‘(2 · (i · 𝐴))) − 1) / (i · ((exp‘(2 · (i · 𝐴))) + 1)))) | ||
| Theorem | resinval 16062 | The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = (ℑ‘(exp‘(i · 𝐴)))) | ||
| Theorem | recosval 16063 | The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i · 𝐴)))) | ||
| Theorem | efi4p 16064* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (((1 − ((𝐴↑2) / 2)) + (i · (𝐴 − ((𝐴↑3) / 6)))) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
| Theorem | resin4p 16065* | Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) + (ℑ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
| Theorem | recos4p 16066* | Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) + (ℜ‘Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘)))) | ||
| Theorem | resincl 16067 | The sine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | ||
| Theorem | recoscl 16068 | The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retancl 16069 | The closure of the tangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | resincld 16070 | Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) | ||
| Theorem | recoscld 16071 | Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) | ||
| Theorem | retancld 16072 | Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) ≠ 0) ⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) | ||
| Theorem | sinneg 16073 | The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | ||
| Theorem | cosneg 16074 | The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | ||
| Theorem | tanneg 16075 | The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) | ||
| Theorem | sin0 16076 | Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
| ⊢ (sin‘0) = 0 | ||
| Theorem | cos0 16077 | Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (cos‘0) = 1 | ||
| Theorem | tan0 16078 | The value of the tangent function at zero is zero. (Contributed by David A. Wheeler, 16-Mar-2014.) |
| ⊢ (tan‘0) = 0 | ||
| Theorem | efival 16079 | The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | ||
| Theorem | efmival 16080 | The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) = ((cos‘𝐴) − (i · (sin‘𝐴)))) | ||
| Theorem | sinhval 16081 | Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | ||
| Theorem | coshval 16082 | Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) | ||
| Theorem | resinhcl 16083 | The hyperbolic sine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((sin‘(i · 𝐴)) / i) ∈ ℝ) | ||
| Theorem | rpcoshcl 16084 | The hyperbolic cosine of a real number is a positive real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ+) | ||
| Theorem | recoshcl 16085 | The hyperbolic cosine of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → (cos‘(i · 𝐴)) ∈ ℝ) | ||
| Theorem | retanhcl 16086 | The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ ℝ) | ||
| Theorem | tanhlt1 16087 | The hyperbolic tangent of a real number is upper bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) < 1) | ||
| Theorem | tanhbnd 16088 | The hyperbolic tangent of a real number is bounded by 1. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (𝐴 ∈ ℝ → ((tan‘(i · 𝐴)) / i) ∈ (-1(,)1)) | ||
| Theorem | efeul 16089 | Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · ((cos‘(ℑ‘𝐴)) + (i · (sin‘(ℑ‘𝐴)))))) | ||
| Theorem | efieq 16090 | The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i · 𝐴)) = (exp‘(i · 𝐵)) ↔ ((cos‘𝐴) = (cos‘𝐵) ∧ (sin‘𝐴) = (sin‘𝐵)))) | ||
| Theorem | sinadd 16091 | Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cosadd 16092 | Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | tanaddlem 16093 | A useful intermediate step in tanadd 16094 when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1)) | ||
| Theorem | tanadd 16094 | Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) | ||
| Theorem | sinsub 16095 | Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | cossub 16096 | Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | ||
| Theorem | addsin 16097 | Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | subsin 16098 | Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴 − 𝐵) / 2))))) | ||
| Theorem | sinmul 16099 | Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 16092 and cossub 16096. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) | ||
| Theorem | cosmul 16100 | Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 16092 and cossub 16096. (Contributed by David A. Wheeler, 26-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |