| Metamath
Proof Explorer Theorem List (p. 161 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fallfac0 16001 | The value of the falling factorial when 𝑁 = 0. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 FallFac 0) = 1) | ||
| Theorem | risefacp1 16002 | The value of the rising factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac (𝑁 + 1)) = ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁))) | ||
| Theorem | fallfacp1 16003 | The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁))) | ||
| Theorem | risefacp1d 16004 | The value of the rising factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 RiseFac (𝑁 + 1)) = ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁))) | ||
| Theorem | fallfacp1d 16005 | The value of the falling factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 FallFac (𝑁 + 1)) = ((𝐴 FallFac 𝑁) · (𝐴 − 𝑁))) | ||
| Theorem | risefac1 16006 | The value of rising factorial at one. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 RiseFac 1) = 𝐴) | ||
| Theorem | fallfac1 16007 | The value of falling factorial at one. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 FallFac 1) = 𝐴) | ||
| Theorem | risefacfac 16008 | Relate rising factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → (1 RiseFac 𝑁) = (!‘𝑁)) | ||
| Theorem | fallfacfwd 16009 | The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1)))) | ||
| Theorem | 0fallfac 16010 | The value of the zero falling factorial at natural 𝑁. (Contributed by Scott Fenton, 17-Feb-2018.) |
| ⊢ (𝑁 ∈ ℕ → (0 FallFac 𝑁) = 0) | ||
| Theorem | 0risefac 16011 | The value of the zero rising factorial at natural 𝑁. (Contributed by Scott Fenton, 17-Feb-2018.) |
| ⊢ (𝑁 ∈ ℕ → (0 RiseFac 𝑁) = 0) | ||
| Theorem | binomfallfaclem1 16012 | Lemma for binomfallfac 16014. Closure law. (Contributed by Scott Fenton, 13-Mar-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁C𝐾) · ((𝐴 FallFac (𝑁 − 𝐾)) · (𝐵 FallFac (𝐾 + 1)))) ∈ ℂ) | ||
| Theorem | binomfallfaclem2 16013* | Lemma for binomfallfac 16014. Inductive step. (Contributed by Scott Fenton, 13-Mar-2018.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵) FallFac (𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴 FallFac ((𝑁 + 1) − 𝑘)) · (𝐵 FallFac 𝑘)))) | ||
| Theorem | binomfallfac 16014* | A version of the binomial theorem using falling factorials instead of exponentials. (Contributed by Scott Fenton, 13-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) FallFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 FallFac (𝑁 − 𝑘)) · (𝐵 FallFac 𝑘)))) | ||
| Theorem | binomrisefac 16015* | A version of the binomial theorem using rising factorials instead of exponentials. (Contributed by Scott Fenton, 16-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵) RiseFac 𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴 RiseFac (𝑁 − 𝑘)) · (𝐵 RiseFac 𝑘)))) | ||
| Theorem | fallfacval4 16016 | Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018.) |
| ⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴 − 𝑁)))) | ||
| Theorem | bcfallfac 16017 | Binomial coefficient in terms of falling factorials. (Contributed by Scott Fenton, 20-Mar-2018.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((𝑁 FallFac 𝐾) / (!‘𝐾))) | ||
| Theorem | fallfacfac 16018 | Relate falling factorial to factorial. (Contributed by Scott Fenton, 5-Jan-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 FallFac 𝑁) = (!‘𝑁)) | ||
| Syntax | cbp 16019 | Declare the constant for the Bernoulli polynomial operator. |
| class BernPoly | ||
| Definition | df-bpoly 16020* | Define the Bernoulli polynomials. Here we use well-founded recursion to define the Bernoulli polynomials. This agrees with most textbook definitions, although explicit formulas do exist. (Contributed by Scott Fenton, 22-May-2014.) |
| ⊢ BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ ⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚)) | ||
| Theorem | bpolylem 16021* | Lemma for bpolyval 16022. (Contributed by Scott Fenton, 22-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ 𝐺 = (𝑔 ∈ V ↦ ⦋(♯‘dom 𝑔) / 𝑛⦌((𝑋↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))) & ⊢ 𝐹 = wrecs( < , ℕ0, 𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) | ||
| Theorem | bpolyval 16022* | The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))))) | ||
| Theorem | bpoly0 16023 | The value of the Bernoulli polynomials at zero. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) | ||
| Theorem | bpoly1 16024 | The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) | ||
| Theorem | bpolycl 16025 | Closure law for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ) | ||
| Theorem | bpolysum 16026* | A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁 − 𝑘) + 1))) = (𝑋↑𝑁)) | ||
| Theorem | bpolydiflem 16027* | Lemma for bpolydif 16028. (Contributed by Scott Fenton, 12-Jun-2014.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1)))) ⇒ ⊢ (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
| Theorem | bpolydif 16028 | Calculate the difference between successive values of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 26-May-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℂ) → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1)))) | ||
| Theorem | fsumkthpow 16029* | A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛↑𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1))) | ||
| Theorem | bpoly2 16030 | The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.) |
| ⊢ (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6))) | ||
| Theorem | bpoly3 16031 | The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.) |
| ⊢ (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) | ||
| Theorem | bpoly4 16032 | The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.) |
| ⊢ (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / ;30))) | ||
| Theorem | fsumcube 16033* | Express the sum of cubes in closed terms. (Contributed by Scott Fenton, 16-Jun-2015.) |
| ⊢ (𝑇 ∈ ℕ0 → Σ𝑘 ∈ (0...𝑇)(𝑘↑3) = (((𝑇↑2) · ((𝑇 + 1)↑2)) / 4)) | ||
| Syntax | ce 16034 | Extend class notation to include the exponential function. |
| class exp | ||
| Syntax | ceu 16035 | Extend class notation to include Euler's constant e = 2.71828.... |
| class e | ||
| Syntax | csin 16036 | Extend class notation to include the sine function. |
| class sin | ||
| Syntax | ccos 16037 | Extend class notation to include the cosine function. |
| class cos | ||
| Syntax | ctan 16038 | Extend class notation to include the tangent function. |
| class tan | ||
| Syntax | cpi 16039 | Extend class notation to include the constant pi, π = 3.14159.... |
| class π | ||
| Definition | df-ef 16040* | Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 16052. (Contributed by NM, 14-Mar-2005.) |
| ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | ||
| Definition | df-e 16041 | Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.) |
| ⊢ e = (exp‘1) | ||
| Definition | df-sin 16042 | Define the sine function. (Contributed by NM, 14-Mar-2005.) |
| ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i))) | ||
| Definition | df-cos 16043 | Define the cosine function. (Contributed by NM, 14-Mar-2005.) |
| ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | ||
| Definition | df-tan 16044 | Define the tangent function. We define it this way for cmpt 5191, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.) |
| ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | ||
| Definition | df-pi 16045 | Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.) |
| ⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, < ) | ||
| Theorem | eftcl 16046 | Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) | ||
| Theorem | reeftcl 16047 | The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) | ||
| Theorem | eftabs 16048 | The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) | ||
| Theorem | eftval 16049* | The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) | ||
| Theorem | efcllem 16050* | Lemma for efcl 16055. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15856 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | ef0lem 16051* | The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) | ||
| Theorem | efval 16052* | Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) | ||
| Theorem | esum 16053 | Value of Euler's constant e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.) |
| ⊢ e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘)) | ||
| Theorem | eff 16054 | Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
| ⊢ exp:ℂ⟶ℂ | ||
| Theorem | efcl 16055 | Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | ||
| Theorem | efcld 16056 | Closure law for the exponential function, deduction version. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℂ) | ||
| Theorem | efval2 16057* | Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | ||
| Theorem | efcvg 16058* | The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) | ||
| Theorem | efcvgfsum 16059* | Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) | ||
| Theorem | reefcl 16060 | The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | ||
| Theorem | reefcld 16061 | The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) | ||
| Theorem | ere 16062 | Euler's constant e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.) |
| ⊢ e ∈ ℝ | ||
| Theorem | ege2le3 16063 | Lemma for egt2lt3 16181. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤ 3) | ||
| Theorem | ef0 16064 | Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (exp‘0) = 1 | ||
| Theorem | efcj 16065 | The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) | ||
| Theorem | efaddlem 16066* | Lemma for efadd 16067 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
| Theorem | efadd 16067 | Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) | ||
| Theorem | fprodefsum 16068* | Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)) | ||
| Theorem | efcan 16069 | Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.) |
| ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) | ||
| Theorem | efne0d 16070 | The exponential of a complex number is nonzero, deduction form. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Revised by SN, 25-Apr-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≠ 0) | ||
| Theorem | efne0 16071 | The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Proof shortened by TA, 14-Nov-2025.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
| Theorem | efne0OLD 16072 | Obsolete version of efne0 16071 as of 14-Nov-2025. The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) | ||
| Theorem | efneg 16073 | The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.) |
| ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) | ||
| Theorem | eff2 16074 | The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) |
| ⊢ exp:ℂ⟶(ℂ ∖ {0}) | ||
| Theorem | efsub 16075 | Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) | ||
| Theorem | efexp 16076 | The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) | ||
| Theorem | efzval 16077 | Value of the exponential function for integers. Special case of efval 16052. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) | ||
| Theorem | efgt0 16078 | The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ → 0 < (exp‘𝐴)) | ||
| Theorem | rpefcl 16079 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ+) | ||
| Theorem | rpefcld 16080 | The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ+) | ||
| Theorem | eftlcvg 16081* | The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | ||
| Theorem | eftlcl 16082* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) | ||
| Theorem | reeftlcl 16083* | Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) | ||
| Theorem | eftlub 16084* | An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤ 1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) | ||
| Theorem | efsep 16085* | Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈ ℕ0 & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) | ||
| Theorem | effsumlt 16086* | The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) | ||
| Theorem | eft0val 16087 | The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | ||
| Theorem | ef4p 16088* | Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈ (ℤ≥‘4)(𝐹‘𝑘))) | ||
| Theorem | efgt1p2 16089 | The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) | ||
| Theorem | efgt1p 16090 | The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) | ||
| Theorem | efgt1 16091 | The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ (𝐴 ∈ ℝ+ → 1 < (exp‘𝐴)) | ||
| Theorem | eflt 16092 | The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) | ||
| Theorem | efle 16093 | The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵))) | ||
| Theorem | reef11 16094 | The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Mario Carneiro, 11-Mar-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | reeff1 16095 | The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | ||
| Theorem | eflegeo 16096 | The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) | ||
| Theorem | sinval 16097 | Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i))) | ||
| Theorem | cosval 16098 | Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | ||
| Theorem | sinf 16099 | Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ sin:ℂ⟶ℂ | ||
| Theorem | cosf 16100 | Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| ⊢ cos:ℂ⟶ℂ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |