MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eff Structured version   Visualization version   GIF version

Theorem eff 15840
Description: Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
eff exp:ℂ⟶ℂ

Proof of Theorem eff
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ef 15826 . 2 exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
2 nn0uz 12670 . . 3 0 = (ℤ‘0)
3 0zd 12381 . . 3 (𝑥 ∈ ℂ → 0 ∈ ℤ)
4 eqid 2736 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝑥𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑥𝑛) / (!‘𝑛)))
54eftval 15835 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑥𝑛) / (!‘𝑛)))‘𝑘) = ((𝑥𝑘) / (!‘𝑘)))
65adantl 483 . . 3 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝑥𝑛) / (!‘𝑛)))‘𝑘) = ((𝑥𝑘) / (!‘𝑘)))
7 eftcl 15832 . . 3 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑥𝑘) / (!‘𝑘)) ∈ ℂ)
84efcllem 15836 . . 3 (𝑥 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝑥𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
92, 3, 6, 7, 8isumcl 15522 . 2 (𝑥 ∈ ℂ → Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)) ∈ ℂ)
101, 9fmpti 7018 1 exp:ℂ⟶ℂ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  cmpt 5164  wf 6454  cfv 6458  (class class class)co 7307  cc 10919  0cc0 10921   / cdiv 11682  0cn0 12283  cexp 13832  !cfa 14037  Σcsu 15446  expce 15820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9249  df-inf 9250  df-oi 9317  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-n0 12284  df-z 12370  df-uz 12633  df-rp 12781  df-ico 13135  df-fz 13290  df-fzo 13433  df-fl 13562  df-seq 13772  df-exp 13833  df-fac 14038  df-hash 14095  df-shft 14827  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-limsup 15229  df-clim 15246  df-rlim 15247  df-sum 15447  df-ef 15826
This theorem is referenced by:  efcl  15841  eff2  15857  reeff1  15878  dveflem  25192  dvef  25193  dvsincos  25194  efcn  25651  efcvx  25657  pige3ALT  25725  efabl  25755  efsubm  25756  dvrelog  25841  dvlog  25855  efopn  25862  dvcxp1  25942  dvcxp2  25943  dvcncxp1  25945  gamf  26241  gamcvg2lem  26257  itgexpif  32635  iprodefisumlem  33755  seff  42140  dvsef  42163  expgrowthi  42164  expgrowth  42166
  Copyright terms: Public domain W3C validator