| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eff | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) |
| Ref | Expression |
|---|---|
| eff | ⊢ exp:ℂ⟶ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ef 15974 | . 2 ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘))) | |
| 2 | nn0uz 12777 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 3 | 0zd 12483 | . . 3 ⊢ (𝑥 ∈ ℂ → 0 ∈ ℤ) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝑥↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑥↑𝑛) / (!‘𝑛))) | |
| 5 | 4 | eftval 15983 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑥↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝑥↑𝑘) / (!‘𝑘))) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝑥↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝑥↑𝑘) / (!‘𝑘))) |
| 7 | eftcl 15980 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑥↑𝑘) / (!‘𝑘)) ∈ ℂ) | |
| 8 | 4 | efcllem 15984 | . . 3 ⊢ (𝑥 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝑥↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
| 9 | 2, 3, 6, 7, 8 | isumcl 15668 | . 2 ⊢ (𝑥 ∈ ℂ → Σ𝑘 ∈ ℕ0 ((𝑥↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 10 | 1, 9 | fmpti 7046 | 1 ⊢ exp:ℂ⟶ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 / cdiv 11777 ℕ0cn0 12384 ↑cexp 13968 !cfa 14180 Σcsu 15593 expce 15968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 |
| This theorem is referenced by: efcl 15989 eff2 16008 reeff1 16029 dveflem 25881 dvef 25882 dvsincos 25883 efcn 26351 efcvx 26357 pige3ALT 26427 efabl 26457 efsubm 26458 dvrelog 26544 dvlog 26558 efopn 26565 dvcxp1 26647 dvcxp2 26648 dvcncxp1 26650 gamf 26951 gamcvg2lem 26967 itgexpif 34574 iprodefisumlem 35713 seff 44282 dvsef 44305 expgrowthi 44306 expgrowth 44308 |
| Copyright terms: Public domain | W3C validator |