MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgval Structured version   Visualization version   GIF version

Theorem efgval 19614
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
Assertion
Ref Expression
efgval = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))}
Distinct variable groups:   𝑦,𝑟,𝑧,𝑛,𝑥,𝑊   ,𝑟,𝑥,𝑦,𝑧   𝑛,𝐼,𝑟,𝑥,𝑦,𝑧
Allowed substitution hint:   (𝑛)

Proof of Theorem efgval
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.r . 2 = ( ~FG𝐼)
2 vex 3442 . . . . . . . . . . . 12 𝑖 ∈ V
3 2on 8408 . . . . . . . . . . . . 13 2o ∈ On
43elexi 3461 . . . . . . . . . . . 12 2o ∈ V
52, 4xpex 7693 . . . . . . . . . . 11 (𝑖 × 2o) ∈ V
6 wrdexg 14449 . . . . . . . . . . 11 ((𝑖 × 2o) ∈ V → Word (𝑖 × 2o) ∈ V)
7 fvi 6903 . . . . . . . . . . 11 (Word (𝑖 × 2o) ∈ V → ( I ‘Word (𝑖 × 2o)) = Word (𝑖 × 2o))
85, 6, 7mp2b 10 . . . . . . . . . 10 ( I ‘Word (𝑖 × 2o)) = Word (𝑖 × 2o)
9 xpeq1 5637 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 × 2o) = (𝐼 × 2o))
10 wrdeq 14461 . . . . . . . . . . . 12 ((𝑖 × 2o) = (𝐼 × 2o) → Word (𝑖 × 2o) = Word (𝐼 × 2o))
119, 10syl 17 . . . . . . . . . . 11 (𝑖 = 𝐼 → Word (𝑖 × 2o) = Word (𝐼 × 2o))
1211fveq2d 6830 . . . . . . . . . 10 (𝑖 = 𝐼 → ( I ‘Word (𝑖 × 2o)) = ( I ‘Word (𝐼 × 2o)))
138, 12eqtr3id 2778 . . . . . . . . 9 (𝑖 = 𝐼 → Word (𝑖 × 2o) = ( I ‘Word (𝐼 × 2o)))
14 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
1513, 14eqtr4di 2782 . . . . . . . 8 (𝑖 = 𝐼 → Word (𝑖 × 2o) = 𝑊)
16 ereq2 8640 . . . . . . . 8 (Word (𝑖 × 2o) = 𝑊 → (𝑟 Er Word (𝑖 × 2o) ↔ 𝑟 Er 𝑊))
1715, 16syl 17 . . . . . . 7 (𝑖 = 𝐼 → (𝑟 Er Word (𝑖 × 2o) ↔ 𝑟 Er 𝑊))
18 raleq 3287 . . . . . . . . 9 (𝑖 = 𝐼 → (∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
1918ralbidv 3152 . . . . . . . 8 (𝑖 = 𝐼 → (∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
2015, 19raleqbidv 3310 . . . . . . 7 (𝑖 = 𝐼 → (∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
2117, 20anbi12d 632 . . . . . 6 (𝑖 = 𝐼 → ((𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) ↔ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))))
2221abbidv 2795 . . . . 5 (𝑖 = 𝐼 → {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))})
2322inteqd 4904 . . . 4 (𝑖 = 𝐼 {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))})
24 df-efg 19606 . . . 4 ~FG = (𝑖 ∈ V ↦ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))})
2514efglem 19613 . . . . 5 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))
26 intexab 5288 . . . . 5 (∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) ↔ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ∈ V)
2725, 26mpbi 230 . . . 4 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ∈ V
2823, 24, 27fvmpt 6934 . . 3 (𝐼 ∈ V → ( ~FG𝐼) = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))})
29 fvprc 6818 . . . 4 𝐼 ∈ V → ( ~FG𝐼) = ∅)
30 abn0 4338 . . . . . . . 8 ({𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ≠ ∅ ↔ ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)))
3125, 30mpbir 231 . . . . . . 7 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ≠ ∅
32 intssuni 4923 . . . . . . 7 ({𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ≠ ∅ → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ⊆ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))})
3331, 32ax-mp 5 . . . . . 6 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ⊆ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))}
34 erssxp 8655 . . . . . . . . . . . 12 (𝑟 Er 𝑊𝑟 ⊆ (𝑊 × 𝑊))
3514efgrcl 19612 . . . . . . . . . . . . . . . . . 18 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
3635simpld 494 . . . . . . . . . . . . . . . . 17 (𝑥𝑊𝐼 ∈ V)
3736con3i 154 . . . . . . . . . . . . . . . 16 𝐼 ∈ V → ¬ 𝑥𝑊)
3837eq0rdv 4360 . . . . . . . . . . . . . . 15 𝐼 ∈ V → 𝑊 = ∅)
3938xpeq2d 5653 . . . . . . . . . . . . . 14 𝐼 ∈ V → (𝑊 × 𝑊) = (𝑊 × ∅))
40 xp0 6111 . . . . . . . . . . . . . 14 (𝑊 × ∅) = ∅
4139, 40eqtrdi 2780 . . . . . . . . . . . . 13 𝐼 ∈ V → (𝑊 × 𝑊) = ∅)
42 ss0b 4354 . . . . . . . . . . . . 13 ((𝑊 × 𝑊) ⊆ ∅ ↔ (𝑊 × 𝑊) = ∅)
4341, 42sylibr 234 . . . . . . . . . . . 12 𝐼 ∈ V → (𝑊 × 𝑊) ⊆ ∅)
4434, 43sylan9ssr 3952 . . . . . . . . . . 11 ((¬ 𝐼 ∈ V ∧ 𝑟 Er 𝑊) → 𝑟 ⊆ ∅)
4544ex 412 . . . . . . . . . 10 𝐼 ∈ V → (𝑟 Er 𝑊𝑟 ⊆ ∅))
4645adantrd 491 . . . . . . . . 9 𝐼 ∈ V → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) → 𝑟 ⊆ ∅))
4746alrimiv 1927 . . . . . . . 8 𝐼 ∈ V → ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) → 𝑟 ⊆ ∅))
48 sseq1 3963 . . . . . . . . 9 (𝑤 = 𝑟 → (𝑤 ⊆ ∅ ↔ 𝑟 ⊆ ∅))
4948ralab2 3659 . . . . . . . 8 (∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))}𝑤 ⊆ ∅ ↔ ∀𝑟((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩)) → 𝑟 ⊆ ∅))
5047, 49sylibr 234 . . . . . . 7 𝐼 ∈ V → ∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))}𝑤 ⊆ ∅)
51 unissb 4893 . . . . . . 7 ( {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ⊆ ∅ ↔ ∀𝑤 ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))}𝑤 ⊆ ∅)
5250, 51sylibr 234 . . . . . 6 𝐼 ∈ V → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ⊆ ∅)
5333, 52sstrid 3949 . . . . 5 𝐼 ∈ V → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ⊆ ∅)
54 ss0 4355 . . . . 5 ( {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} ⊆ ∅ → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} = ∅)
5553, 54syl 17 . . . 4 𝐼 ∈ V → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))} = ∅)
5629, 55eqtr4d 2767 . . 3 𝐼 ∈ V → ( ~FG𝐼) = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))})
5728, 56pm2.61i 182 . 2 ( ~FG𝐼) = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))}
581, 57eqtri 2752 1 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝐼𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  Vcvv 3438  cdif 3902  wss 3905  c0 4286  cop 4585  cotp 4587   cuni 4861   cint 4899   class class class wbr 5095   I cid 5517   × cxp 5621  Oncon0 6311  cfv 6486  (class class class)co 7353  1oc1o 8388  2oc2o 8389   Er wer 8629  0cc0 11028  ...cfz 13428  chash 14255  Word cword 14438   splice csplice 14673  ⟨“cs2 14766   ~FG cefg 19603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-splice 14674  df-s2 14773  df-efg 19606
This theorem is referenced by:  efger  19615  efgi  19616  efgval2  19621  frgpuplem  19669
  Copyright terms: Public domain W3C validator