Detailed syntax breakdown of Definition df-efmnd
Step | Hyp | Ref
| Expression |
1 | | cefmnd 18516 |
. 2
class
EndoFMnd |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vb |
. . . 4
setvar 𝑏 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
6 | | cmap 8624 |
. . . . 5
class
↑m |
7 | 5, 5, 6 | co 7284 |
. . . 4
class (𝑥 ↑m 𝑥) |
8 | | cnx 16903 |
. . . . . . 7
class
ndx |
9 | | cbs 16921 |
. . . . . . 7
class
Base |
10 | 8, 9 | cfv 6437 |
. . . . . 6
class
(Base‘ndx) |
11 | 4 | cv 1538 |
. . . . . 6
class 𝑏 |
12 | 10, 11 | cop 4568 |
. . . . 5
class
〈(Base‘ndx), 𝑏〉 |
13 | | cplusg 16971 |
. . . . . . 7
class
+g |
14 | 8, 13 | cfv 6437 |
. . . . . 6
class
(+g‘ndx) |
15 | | vf |
. . . . . . 7
setvar 𝑓 |
16 | | vg |
. . . . . . 7
setvar 𝑔 |
17 | 15 | cv 1538 |
. . . . . . . 8
class 𝑓 |
18 | 16 | cv 1538 |
. . . . . . . 8
class 𝑔 |
19 | 17, 18 | ccom 5594 |
. . . . . . 7
class (𝑓 ∘ 𝑔) |
20 | 15, 16, 11, 11, 19 | cmpo 7286 |
. . . . . 6
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) |
21 | 14, 20 | cop 4568 |
. . . . 5
class
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉 |
22 | | cts 16977 |
. . . . . . 7
class
TopSet |
23 | 8, 22 | cfv 6437 |
. . . . . 6
class
(TopSet‘ndx) |
24 | 5 | cpw 4534 |
. . . . . . . . 9
class 𝒫
𝑥 |
25 | 24 | csn 4562 |
. . . . . . . 8
class
{𝒫 𝑥} |
26 | 5, 25 | cxp 5588 |
. . . . . . 7
class (𝑥 × {𝒫 𝑥}) |
27 | | cpt 17158 |
. . . . . . 7
class
∏t |
28 | 26, 27 | cfv 6437 |
. . . . . 6
class
(∏t‘(𝑥 × {𝒫 𝑥})) |
29 | 23, 28 | cop 4568 |
. . . . 5
class
〈(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))〉 |
30 | 12, 21, 29 | ctp 4566 |
. . . 4
class
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉} |
31 | 4, 7, 30 | csb 3833 |
. . 3
class
⦋(𝑥
↑m 𝑥) /
𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉} |
32 | 2, 3, 31 | cmpt 5158 |
. 2
class (𝑥 ∈ V ↦
⦋(𝑥
↑m 𝑥) /
𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |
33 | 1, 32 | wceq 1539 |
1
wff EndoFMnd =
(𝑥 ∈ V ↦
⦋(𝑥
↑m 𝑥) /
𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |