Detailed syntax breakdown of Definition df-efmnd
| Step | Hyp | Ref
| Expression |
| 1 | | cefmnd 18881 |
. 2
class
EndoFMnd |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 6 | | cmap 8866 |
. . . . 5
class
↑m |
| 7 | 5, 5, 6 | co 7431 |
. . . 4
class (𝑥 ↑m 𝑥) |
| 8 | | cnx 17230 |
. . . . . . 7
class
ndx |
| 9 | | cbs 17247 |
. . . . . . 7
class
Base |
| 10 | 8, 9 | cfv 6561 |
. . . . . 6
class
(Base‘ndx) |
| 11 | 4 | cv 1539 |
. . . . . 6
class 𝑏 |
| 12 | 10, 11 | cop 4632 |
. . . . 5
class
〈(Base‘ndx), 𝑏〉 |
| 13 | | cplusg 17297 |
. . . . . . 7
class
+g |
| 14 | 8, 13 | cfv 6561 |
. . . . . 6
class
(+g‘ndx) |
| 15 | | vf |
. . . . . . 7
setvar 𝑓 |
| 16 | | vg |
. . . . . . 7
setvar 𝑔 |
| 17 | 15 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 18 | 16 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 19 | 17, 18 | ccom 5689 |
. . . . . . 7
class (𝑓 ∘ 𝑔) |
| 20 | 15, 16, 11, 11, 19 | cmpo 7433 |
. . . . . 6
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) |
| 21 | 14, 20 | cop 4632 |
. . . . 5
class
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉 |
| 22 | | cts 17303 |
. . . . . . 7
class
TopSet |
| 23 | 8, 22 | cfv 6561 |
. . . . . 6
class
(TopSet‘ndx) |
| 24 | 5 | cpw 4600 |
. . . . . . . . 9
class 𝒫
𝑥 |
| 25 | 24 | csn 4626 |
. . . . . . . 8
class
{𝒫 𝑥} |
| 26 | 5, 25 | cxp 5683 |
. . . . . . 7
class (𝑥 × {𝒫 𝑥}) |
| 27 | | cpt 17483 |
. . . . . . 7
class
∏t |
| 28 | 26, 27 | cfv 6561 |
. . . . . 6
class
(∏t‘(𝑥 × {𝒫 𝑥})) |
| 29 | 23, 28 | cop 4632 |
. . . . 5
class
〈(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))〉 |
| 30 | 12, 21, 29 | ctp 4630 |
. . . 4
class
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉} |
| 31 | 4, 7, 30 | csb 3899 |
. . 3
class
⦋(𝑥
↑m 𝑥) /
𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉} |
| 32 | 2, 3, 31 | cmpt 5225 |
. 2
class (𝑥 ∈ V ↦
⦋(𝑥
↑m 𝑥) /
𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |
| 33 | 1, 32 | wceq 1540 |
1
wff EndoFMnd =
(𝑥 ∈ V ↦
⦋(𝑥
↑m 𝑥) /
𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |