MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgvalstruct Structured version   Visualization version   GIF version

Theorem symgvalstruct 19355
Description: The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
symgvalstruct.g 𝐺 = (SymGrp‘𝐴)
symgvalstruct.b 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
symgvalstruct.m 𝑀 = (𝐴m 𝐴)
symgvalstruct.p + = (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔))
symgvalstruct.j 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
Assertion
Ref Expression
symgvalstruct (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Distinct variable groups:   𝐴,𝑓,𝑔   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑓,𝑀,𝑔   𝑥,𝑉   𝑥, +
Allowed substitution hints:   𝐵(𝑓,𝑔)   + (𝑓,𝑔)   𝐺(𝑓,𝑔)   𝐽(𝑓,𝑔)   𝑀(𝑥)   𝑉(𝑓,𝑔)

Proof of Theorem symgvalstruct
StepHypRef Expression
1 hashv01gt1 14336 . 2 (𝐴𝑉 → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)))
2 hasheq0 14354 . . . 4 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
3 0symgefmndeq 19352 . . . . . . . . 9 (EndoFMnd‘∅) = (SymGrp‘∅)
43eqcomi 2734 . . . . . . . 8 (SymGrp‘∅) = (EndoFMnd‘∅)
5 symgvalstruct.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐴)
6 fveq2 6894 . . . . . . . . 9 (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅))
75, 6eqtrid 2777 . . . . . . . 8 (𝐴 = ∅ → 𝐺 = (SymGrp‘∅))
8 fveq2 6894 . . . . . . . 8 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅))
94, 7, 83eqtr4a 2791 . . . . . . 7 (𝐴 = ∅ → 𝐺 = (EndoFMnd‘𝐴))
109adantl 480 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → 𝐺 = (EndoFMnd‘𝐴))
11 eqid 2725 . . . . . . . 8 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
12 symgvalstruct.m . . . . . . . 8 𝑀 = (𝐴m 𝐴)
13 symgvalstruct.p . . . . . . . 8 + = (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔))
14 symgvalstruct.j . . . . . . . 8 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
1511, 12, 13, 14efmnd 18826 . . . . . . 7 (𝐴𝑉 → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
1615adantr 479 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
17 0map0sn0 8902 . . . . . . . . . . 11 (∅ ↑m ∅) = {∅}
18 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918, 18oveq12d 7435 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐴m 𝐴) = (∅ ↑m ∅))
20 symgvalstruct.b . . . . . . . . . . . 12 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
217fveq2d 6898 . . . . . . . . . . . . 13 (𝐴 = ∅ → (Base‘𝐺) = (Base‘(SymGrp‘∅)))
22 eqid 2725 . . . . . . . . . . . . . 14 (Base‘𝐺) = (Base‘𝐺)
235, 22symgbas 19329 . . . . . . . . . . . . 13 (Base‘𝐺) = {𝑥𝑥:𝐴1-1-onto𝐴}
24 symgbas0 19347 . . . . . . . . . . . . 13 (Base‘(SymGrp‘∅)) = {∅}
2521, 23, 243eqtr3g 2788 . . . . . . . . . . . 12 (𝐴 = ∅ → {𝑥𝑥:𝐴1-1-onto𝐴} = {∅})
2620, 25eqtrid 2777 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐵 = {∅})
2717, 19, 263eqtr4a 2791 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴m 𝐴) = 𝐵)
2827adantl 480 . . . . . . . . 9 ((𝐴𝑉𝐴 = ∅) → (𝐴m 𝐴) = 𝐵)
2912, 28eqtrid 2777 . . . . . . . 8 ((𝐴𝑉𝐴 = ∅) → 𝑀 = 𝐵)
3029opeq2d 4881 . . . . . . 7 ((𝐴𝑉𝐴 = ∅) → ⟨(Base‘ndx), 𝑀⟩ = ⟨(Base‘ndx), 𝐵⟩)
3130tpeq1d 4750 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3210, 16, 313eqtrd 2769 . . . . 5 ((𝐴𝑉𝐴 = ∅) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3332ex 411 . . . 4 (𝐴𝑉 → (𝐴 = ∅ → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
342, 33sylbid 239 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 0 → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
35 hash1snb 14410 . . . 4 (𝐴𝑉 → ((♯‘𝐴) = 1 ↔ ∃𝑥 𝐴 = {𝑥}))
36 vsnex 5430 . . . . . . . 8 {𝑥} ∈ V
37 eleq1 2813 . . . . . . . 8 (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V))
3836, 37mpbiri 257 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 ∈ V)
3911, 12, 13, 14efmnd 18826 . . . . . . 7 (𝐴 ∈ V → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
4038, 39syl 17 . . . . . 6 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
41 snsymgefmndeq 19353 . . . . . . 7 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
4241, 5eqtr4di 2783 . . . . . 6 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = 𝐺)
4342fveq2d 6898 . . . . . . . . 9 (𝐴 = {𝑥} → (Base‘(EndoFMnd‘𝐴)) = (Base‘𝐺))
44 eqid 2725 . . . . . . . . . . 11 (Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴))
4511, 44efmndbas 18827 . . . . . . . . . 10 (Base‘(EndoFMnd‘𝐴)) = (𝐴m 𝐴)
4645, 12eqtr4i 2756 . . . . . . . . 9 (Base‘(EndoFMnd‘𝐴)) = 𝑀
4723, 20eqtr4i 2756 . . . . . . . . 9 (Base‘𝐺) = 𝐵
4843, 46, 473eqtr3g 2788 . . . . . . . 8 (𝐴 = {𝑥} → 𝑀 = 𝐵)
4948opeq2d 4881 . . . . . . 7 (𝐴 = {𝑥} → ⟨(Base‘ndx), 𝑀⟩ = ⟨(Base‘ndx), 𝐵⟩)
5049tpeq1d 4750 . . . . . 6 (𝐴 = {𝑥} → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5140, 42, 503eqtr3d 2773 . . . . 5 (𝐴 = {𝑥} → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5251exlimiv 1925 . . . 4 (∃𝑥 𝐴 = {𝑥} → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5335, 52biimtrdi 252 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 1 → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
54 ssnpss 4100 . . . . . . 7 ((𝐴m 𝐴) ⊆ 𝐵 → ¬ 𝐵 ⊊ (𝐴m 𝐴))
5511, 5symgpssefmnd 19354 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴)))
5620, 23eqtr4i 2756 . . . . . . . . 9 𝐵 = (Base‘𝐺)
5745eqcomi 2734 . . . . . . . . 9 (𝐴m 𝐴) = (Base‘(EndoFMnd‘𝐴))
5856, 57psseq12i 4088 . . . . . . . 8 (𝐵 ⊊ (𝐴m 𝐴) ↔ (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴)))
5955, 58sylibr 233 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊊ (𝐴m 𝐴))
6054, 59nsyl3 138 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ¬ (𝐴m 𝐴) ⊆ 𝐵)
61 fvexd 6909 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) ∈ V)
62 f1osetex 8876 . . . . . . . 8 {𝑥𝑥:𝐴1-1-onto𝐴} ∈ V
6320, 62eqeltri 2821 . . . . . . 7 𝐵 ∈ V
6463a1i 11 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ∈ V)
655, 20symgval 19327 . . . . . . 7 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
6665, 57ressval2 17213 . . . . . 6 ((¬ (𝐴m 𝐴) ⊆ 𝐵 ∧ (EndoFMnd‘𝐴) ∈ V ∧ 𝐵 ∈ V) → 𝐺 = ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩))
6760, 61, 64, 66syl3anc 1368 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩))
68 ovex 7450 . . . . . . 7 (𝐴m 𝐴) ∈ V
6968inex2 5318 . . . . . 6 (𝐵 ∩ (𝐴m 𝐴)) ∈ V
70 setsval 17135 . . . . . 6 (((EndoFMnd‘𝐴) ∈ V ∧ (𝐵 ∩ (𝐴m 𝐴)) ∈ V) → ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩) = (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
7161, 69, 70sylancl 584 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩) = (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
7215adantr 479 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
7372reseq1d 5983 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) = ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})))
7473uneq1d 4160 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = (({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
75 eqidd 2726 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
76 fvexd 6909 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (+g‘ndx) ∈ V)
77 fvexd 6909 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx) ∈ V)
7812, 68eqeltri 2821 . . . . . . . . . . 11 𝑀 ∈ V
7978, 78mpoex 8082 . . . . . . . . . 10 (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔)) ∈ V
8013, 79eqeltri 2821 . . . . . . . . 9 + ∈ V
8180a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → + ∈ V)
8214fvexi 6908 . . . . . . . . 9 𝐽 ∈ V
8382a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐽 ∈ V)
84 basendxnplusgndx 17262 . . . . . . . . . 10 (Base‘ndx) ≠ (+g‘ndx)
8584necomi 2985 . . . . . . . . 9 (+g‘ndx) ≠ (Base‘ndx)
8685a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (+g‘ndx) ≠ (Base‘ndx))
87 tsetndxnbasendx 17336 . . . . . . . . 9 (TopSet‘ndx) ≠ (Base‘ndx)
8887a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx) ≠ (Base‘ndx))
8975, 76, 77, 81, 83, 86, 88tpres 7211 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) = {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
9089uneq1d 4160 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
91 uncom 4151 . . . . . . . 8 ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = ({⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩} ∪ {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
92 tpass 4757 . . . . . . . 8 {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = ({⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩} ∪ {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
9391, 92eqtr4i 2756 . . . . . . 7 ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
945, 56symgbasmap 19335 . . . . . . . . . . . 12 (𝑥𝐵𝑥 ∈ (𝐴m 𝐴))
9594a1i 11 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (𝑥𝐵𝑥 ∈ (𝐴m 𝐴)))
9695ssrdv 3983 . . . . . . . . . 10 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊆ (𝐴m 𝐴))
97 dfss2 3963 . . . . . . . . . 10 (𝐵 ⊆ (𝐴m 𝐴) ↔ (𝐵 ∩ (𝐴m 𝐴)) = 𝐵)
9896, 97sylib 217 . . . . . . . . 9 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (𝐵 ∩ (𝐴m 𝐴)) = 𝐵)
9998opeq2d 4881 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩ = ⟨(Base‘ndx), 𝐵⟩)
10099tpeq1d 4750 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
10193, 100eqtrid 2777 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
10274, 90, 1013eqtrd 2769 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
10367, 71, 1023eqtrd 2769 . . . 4 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
104103ex 411 . . 3 (𝐴𝑉 → (1 < (♯‘𝐴) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
10534, 53, 1043jaod 1425 . 2 (𝐴𝑉 → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
1061, 105mpd 15 1 (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3o 1083   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wne 2930  Vcvv 3463  cdif 3942  cun 3943  cin 3944  wss 3945  wpss 3946  c0 4323  𝒫 cpw 4603  {csn 4629  {cpr 4631  {ctp 4633  cop 4635   class class class wbr 5148   × cxp 5675  cres 5679  ccom 5681  1-1-ontowf1o 6546  cfv 6547  (class class class)co 7417  cmpo 7419  m cmap 8843  0cc0 11138  1c1 11139   < clt 11278  chash 14321   sSet csts 17131  ndxcnx 17161  Basecbs 17179  +gcplusg 17232  TopSetcts 17238  tcpt 17419  EndoFMndcefmnd 18824  SymGrpcsymg 19325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-tset 17251  df-efmnd 18825  df-symg 19326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator