MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgvalstruct Structured version   Visualization version   GIF version

Theorem symgvalstruct 18520
Description: The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.)
Hypotheses
Ref Expression
symgvalstruct.g 𝐺 = (SymGrp‘𝐴)
symgvalstruct.b 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
symgvalstruct.m 𝑀 = (𝐴m 𝐴)
symgvalstruct.p + = (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔))
symgvalstruct.j 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
Assertion
Ref Expression
symgvalstruct (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Distinct variable groups:   𝐴,𝑓,𝑔   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑓,𝑀,𝑔   𝑥,𝑉   𝑥, +
Allowed substitution hints:   𝐵(𝑓,𝑔)   + (𝑓,𝑔)   𝐺(𝑓,𝑔)   𝐽(𝑓,𝑔)   𝑀(𝑥)   𝑉(𝑓,𝑔)

Proof of Theorem symgvalstruct
StepHypRef Expression
1 hashv01gt1 13702 . 2 (𝐴𝑉 → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)))
2 hasheq0 13721 . . . 4 (𝐴𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
3 0symgefmndeq 18517 . . . . . . . . 9 (EndoFMnd‘∅) = (SymGrp‘∅)
43eqcomi 2829 . . . . . . . 8 (SymGrp‘∅) = (EndoFMnd‘∅)
5 symgvalstruct.g . . . . . . . . 9 𝐺 = (SymGrp‘𝐴)
6 fveq2 6663 . . . . . . . . 9 (𝐴 = ∅ → (SymGrp‘𝐴) = (SymGrp‘∅))
75, 6syl5eq 2867 . . . . . . . 8 (𝐴 = ∅ → 𝐺 = (SymGrp‘∅))
8 fveq2 6663 . . . . . . . 8 (𝐴 = ∅ → (EndoFMnd‘𝐴) = (EndoFMnd‘∅))
94, 7, 83eqtr4a 2881 . . . . . . 7 (𝐴 = ∅ → 𝐺 = (EndoFMnd‘𝐴))
109adantl 484 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → 𝐺 = (EndoFMnd‘𝐴))
11 eqid 2820 . . . . . . . 8 (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴)
12 symgvalstruct.m . . . . . . . 8 𝑀 = (𝐴m 𝐴)
13 symgvalstruct.p . . . . . . . 8 + = (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔))
14 symgvalstruct.j . . . . . . . 8 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
1511, 12, 13, 14efmnd 18030 . . . . . . 7 (𝐴𝑉 → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
1615adantr 483 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
17 0map0sn0 8442 . . . . . . . . . . 11 (∅ ↑m ∅) = {∅}
18 id 22 . . . . . . . . . . . 12 (𝐴 = ∅ → 𝐴 = ∅)
1918, 18oveq12d 7167 . . . . . . . . . . 11 (𝐴 = ∅ → (𝐴m 𝐴) = (∅ ↑m ∅))
20 symgvalstruct.b . . . . . . . . . . . 12 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
217fveq2d 6667 . . . . . . . . . . . . 13 (𝐴 = ∅ → (Base‘𝐺) = (Base‘(SymGrp‘∅)))
22 eqid 2820 . . . . . . . . . . . . . 14 (Base‘𝐺) = (Base‘𝐺)
235, 22symgbas 18494 . . . . . . . . . . . . 13 (Base‘𝐺) = {𝑥𝑥:𝐴1-1-onto𝐴}
24 symgbas0 18512 . . . . . . . . . . . . 13 (Base‘(SymGrp‘∅)) = {∅}
2521, 23, 243eqtr3g 2878 . . . . . . . . . . . 12 (𝐴 = ∅ → {𝑥𝑥:𝐴1-1-onto𝐴} = {∅})
2620, 25syl5eq 2867 . . . . . . . . . . 11 (𝐴 = ∅ → 𝐵 = {∅})
2717, 19, 263eqtr4a 2881 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴m 𝐴) = 𝐵)
2827adantl 484 . . . . . . . . 9 ((𝐴𝑉𝐴 = ∅) → (𝐴m 𝐴) = 𝐵)
2912, 28syl5eq 2867 . . . . . . . 8 ((𝐴𝑉𝐴 = ∅) → 𝑀 = 𝐵)
3029opeq2d 4803 . . . . . . 7 ((𝐴𝑉𝐴 = ∅) → ⟨(Base‘ndx), 𝑀⟩ = ⟨(Base‘ndx), 𝐵⟩)
3130tpeq1d 4674 . . . . . 6 ((𝐴𝑉𝐴 = ∅) → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3210, 16, 313eqtrd 2859 . . . . 5 ((𝐴𝑉𝐴 = ∅) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3332ex 415 . . . 4 (𝐴𝑉 → (𝐴 = ∅ → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
342, 33sylbid 242 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 0 → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
35 hash1snb 13777 . . . 4 (𝐴𝑉 → ((♯‘𝐴) = 1 ↔ ∃𝑥 𝐴 = {𝑥}))
36 snex 5325 . . . . . . . 8 {𝑥} ∈ V
37 eleq1 2899 . . . . . . . 8 (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V))
3836, 37mpbiri 260 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 ∈ V)
3911, 12, 13, 14efmnd 18030 . . . . . . 7 (𝐴 ∈ V → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
4038, 39syl 17 . . . . . 6 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
41 snsymgefmndeq 18518 . . . . . . 7 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴))
4241, 5syl6eqr 2873 . . . . . 6 (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = 𝐺)
4342fveq2d 6667 . . . . . . . . 9 (𝐴 = {𝑥} → (Base‘(EndoFMnd‘𝐴)) = (Base‘𝐺))
44 eqid 2820 . . . . . . . . . . 11 (Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴))
4511, 44efmndbas 18031 . . . . . . . . . 10 (Base‘(EndoFMnd‘𝐴)) = (𝐴m 𝐴)
4645, 12eqtr4i 2846 . . . . . . . . 9 (Base‘(EndoFMnd‘𝐴)) = 𝑀
4723, 20eqtr4i 2846 . . . . . . . . 9 (Base‘𝐺) = 𝐵
4843, 46, 473eqtr3g 2878 . . . . . . . 8 (𝐴 = {𝑥} → 𝑀 = 𝐵)
4948opeq2d 4803 . . . . . . 7 (𝐴 = {𝑥} → ⟨(Base‘ndx), 𝑀⟩ = ⟨(Base‘ndx), 𝐵⟩)
5049tpeq1d 4674 . . . . . 6 (𝐴 = {𝑥} → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5140, 42, 503eqtr3d 2863 . . . . 5 (𝐴 = {𝑥} → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5251exlimiv 1930 . . . 4 (∃𝑥 𝐴 = {𝑥} → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
5335, 52syl6bi 255 . . 3 (𝐴𝑉 → ((♯‘𝐴) = 1 → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
54 ssnpss 4073 . . . . . . 7 ((𝐴m 𝐴) ⊆ 𝐵 → ¬ 𝐵 ⊊ (𝐴m 𝐴))
5511, 5symgpssefmnd 18519 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴)))
5620, 23eqtr4i 2846 . . . . . . . . 9 𝐵 = (Base‘𝐺)
5745eqcomi 2829 . . . . . . . . 9 (𝐴m 𝐴) = (Base‘(EndoFMnd‘𝐴))
5856, 57psseq12i 4061 . . . . . . . 8 (𝐵 ⊊ (𝐴m 𝐴) ↔ (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴)))
5955, 58sylibr 236 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊊ (𝐴m 𝐴))
6054, 59nsyl3 140 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ¬ (𝐴m 𝐴) ⊆ 𝐵)
61 fvexd 6678 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) ∈ V)
625, 56symgbasex 18495 . . . . . . 7 (𝐴𝑉𝐵 ∈ V)
6362adantr 483 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ∈ V)
645, 20symgval 18492 . . . . . . 7 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
6564, 57ressval2 16548 . . . . . 6 ((¬ (𝐴m 𝐴) ⊆ 𝐵 ∧ (EndoFMnd‘𝐴) ∈ V ∧ 𝐵 ∈ V) → 𝐺 = ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩))
6660, 61, 63, 65syl3anc 1366 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩))
67 ovex 7182 . . . . . . 7 (𝐴m 𝐴) ∈ V
6867inex2 5215 . . . . . 6 (𝐵 ∩ (𝐴m 𝐴)) ∈ V
69 setsval 16508 . . . . . 6 (((EndoFMnd‘𝐴) ∈ V ∧ (𝐵 ∩ (𝐴m 𝐴)) ∈ V) → ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩) = (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
7061, 68, 69sylancl 588 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) sSet ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩) = (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
7115adantr 483 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
7271reseq1d 5845 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) = ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})))
7372uneq1d 4131 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = (({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
74 eqidd 2821 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
75 fvexd 6678 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (+g‘ndx) ∈ V)
76 fvexd 6678 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx) ∈ V)
7712, 67eqeltri 2908 . . . . . . . . . . 11 𝑀 ∈ V
7877, 77mpoex 7770 . . . . . . . . . 10 (𝑓𝑀, 𝑔𝑀 ↦ (𝑓𝑔)) ∈ V
7913, 78eqeltri 2908 . . . . . . . . 9 + ∈ V
8079a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → + ∈ V)
8114fvexi 6677 . . . . . . . . 9 𝐽 ∈ V
8281a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐽 ∈ V)
83 basendxnplusgndx 16603 . . . . . . . . . 10 (Base‘ndx) ≠ (+g‘ndx)
8483necomi 3069 . . . . . . . . 9 (+g‘ndx) ≠ (Base‘ndx)
8584a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (+g‘ndx) ≠ (Base‘ndx))
86 tsetndx 16654 . . . . . . . . . 10 (TopSet‘ndx) = 9
87 1re 10634 . . . . . . . . . . . 12 1 ∈ ℝ
88 1lt9 11837 . . . . . . . . . . . 12 1 < 9
8987, 88gtneii 10745 . . . . . . . . . . 11 9 ≠ 1
90 df-base 16484 . . . . . . . . . . . 12 Base = Slot 1
91 1nn 11642 . . . . . . . . . . . 12 1 ∈ ℕ
9290, 91ndxarg 16503 . . . . . . . . . . 11 (Base‘ndx) = 1
9389, 92neeqtrri 3088 . . . . . . . . . 10 9 ≠ (Base‘ndx)
9486, 93eqnetri 3085 . . . . . . . . 9 (TopSet‘ndx) ≠ (Base‘ndx)
9594a1i 11 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx) ≠ (Base‘ndx))
9674, 75, 76, 80, 82, 85, 95tpres 6956 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) = {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
9796uneq1d 4131 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}))
98 uncom 4122 . . . . . . . 8 ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = ({⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩} ∪ {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
99 tpass 4681 . . . . . . . 8 {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = ({⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩} ∪ {⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
10098, 99eqtr4i 2846 . . . . . . 7 ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}
1015, 56symgbasmap 18500 . . . . . . . . . . . 12 (𝑥𝐵𝑥 ∈ (𝐴m 𝐴))
102101a1i 11 . . . . . . . . . . 11 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (𝑥𝐵𝑥 ∈ (𝐴m 𝐴)))
103102ssrdv 3966 . . . . . . . . . 10 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊆ (𝐴m 𝐴))
104 df-ss 3945 . . . . . . . . . 10 (𝐵 ⊆ (𝐴m 𝐴) ↔ (𝐵 ∩ (𝐴m 𝐴)) = 𝐵)
105103, 104sylib 220 . . . . . . . . 9 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (𝐵 ∩ (𝐴m 𝐴)) = 𝐵)
106105opeq2d 4803 . . . . . . . 8 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩ = ⟨(Base‘ndx), 𝐵⟩)
107106tpeq1d 4674 . . . . . . 7 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
108100, 107syl5eq 2867 . . . . . 6 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → ({⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
10973, 97, 1083eqtrd 2859 . . . . 5 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → (((EndoFMnd‘𝐴) ↾ (V ∖ {(Base‘ndx)})) ∪ {⟨(Base‘ndx), (𝐵 ∩ (𝐴m 𝐴))⟩}) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
11066, 70, 1093eqtrd 2859 . . . 4 ((𝐴𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
111110ex 415 . . 3 (𝐴𝑉 → (1 < (♯‘𝐴) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
11234, 53, 1113jaod 1423 . 2 (𝐴𝑉 → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
1131, 112mpd 15 1 (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3o 1081   = wceq 1536  wex 1779  wcel 2113  {cab 2798  wne 3015  Vcvv 3491  cdif 3926  cun 3927  cin 3928  wss 3929  wpss 3930  c0 4284  𝒫 cpw 4532  {csn 4560  {cpr 4562  {ctp 4564  cop 4566   class class class wbr 5059   × cxp 5546  cres 5550  ccom 5552  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7149  cmpo 7151  m cmap 8399  0cc0 10530  1c1 10531   < clt 10668  9c9 11693  chash 13687  ndxcnx 16475   sSet csts 16476  Basecbs 16478  +gcplusg 16560  TopSetcts 16566  tcpt 16707  EndoFMndcefmnd 18028  SymGrpcsymg 18490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12890  df-hash 13688  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-tset 16579  df-efmnd 18029  df-symg 18491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator