Proof of Theorem symgvalstruct
| Step | Hyp | Ref
| Expression |
| 1 | | hashv01gt1 14320 |
. 2
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴))) |
| 2 | | hasheq0 14338 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) |
| 3 | | 0symgefmndeq 19330 |
. . . . . . . . 9
⊢
(EndoFMnd‘∅) = (SymGrp‘∅) |
| 4 | 3 | eqcomi 2739 |
. . . . . . . 8
⊢
(SymGrp‘∅) = (EndoFMnd‘∅) |
| 5 | | symgvalstruct.g |
. . . . . . . . 9
⊢ 𝐺 = (SymGrp‘𝐴) |
| 6 | | fveq2 6865 |
. . . . . . . . 9
⊢ (𝐴 = ∅ →
(SymGrp‘𝐴) =
(SymGrp‘∅)) |
| 7 | 5, 6 | eqtrid 2777 |
. . . . . . . 8
⊢ (𝐴 = ∅ → 𝐺 =
(SymGrp‘∅)) |
| 8 | | fveq2 6865 |
. . . . . . . 8
⊢ (𝐴 = ∅ →
(EndoFMnd‘𝐴) =
(EndoFMnd‘∅)) |
| 9 | 4, 7, 8 | 3eqtr4a 2791 |
. . . . . . 7
⊢ (𝐴 = ∅ → 𝐺 = (EndoFMnd‘𝐴)) |
| 10 | 9 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → 𝐺 = (EndoFMnd‘𝐴)) |
| 11 | | eqid 2730 |
. . . . . . . 8
⊢
(EndoFMnd‘𝐴) =
(EndoFMnd‘𝐴) |
| 12 | | symgvalstruct.m |
. . . . . . . 8
⊢ 𝑀 = (𝐴 ↑m 𝐴) |
| 13 | | symgvalstruct.p |
. . . . . . . 8
⊢ + = (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) |
| 14 | | symgvalstruct.j |
. . . . . . . 8
⊢ 𝐽 =
(∏t‘(𝐴 × {𝒫 𝐴})) |
| 15 | 11, 12, 13, 14 | efmnd 18803 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (EndoFMnd‘𝐴) = {〈(Base‘ndx), 𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → (EndoFMnd‘𝐴) = {〈(Base‘ndx),
𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 17 | | 0map0sn0 8862 |
. . . . . . . . . . 11
⊢ (∅
↑m ∅) = {∅} |
| 18 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝐴 = ∅ → 𝐴 = ∅) |
| 19 | 18, 18 | oveq12d 7412 |
. . . . . . . . . . 11
⊢ (𝐴 = ∅ → (𝐴 ↑m 𝐴) = (∅ ↑m
∅)) |
| 20 | | symgvalstruct.b |
. . . . . . . . . . . 12
⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| 21 | 7 | fveq2d 6869 |
. . . . . . . . . . . . 13
⊢ (𝐴 = ∅ →
(Base‘𝐺) =
(Base‘(SymGrp‘∅))) |
| 22 | | eqid 2730 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 23 | 5, 22 | symgbas 19308 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐺) =
{𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| 24 | | symgbas0 19325 |
. . . . . . . . . . . . 13
⊢
(Base‘(SymGrp‘∅)) = {∅} |
| 25 | 21, 23, 24 | 3eqtr3g 2788 |
. . . . . . . . . . . 12
⊢ (𝐴 = ∅ → {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} = {∅}) |
| 26 | 20, 25 | eqtrid 2777 |
. . . . . . . . . . 11
⊢ (𝐴 = ∅ → 𝐵 = {∅}) |
| 27 | 17, 19, 26 | 3eqtr4a 2791 |
. . . . . . . . . 10
⊢ (𝐴 = ∅ → (𝐴 ↑m 𝐴) = 𝐵) |
| 28 | 27 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → (𝐴 ↑m 𝐴) = 𝐵) |
| 29 | 12, 28 | eqtrid 2777 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → 𝑀 = 𝐵) |
| 30 | 29 | opeq2d 4852 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → 〈(Base‘ndx),
𝑀〉 =
〈(Base‘ndx), 𝐵〉) |
| 31 | 30 | tpeq1d 4717 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → {〈(Base‘ndx),
𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 32 | 10, 16, 31 | 3eqtrd 2769 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 = ∅) → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 33 | 32 | ex 412 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 34 | 2, 33 | sylbid 240 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 0 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 35 | | hash1snb 14394 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 ↔ ∃𝑥 𝐴 = {𝑥})) |
| 36 | | vsnex 5397 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
| 37 | | eleq1 2817 |
. . . . . . . 8
⊢ (𝐴 = {𝑥} → (𝐴 ∈ V ↔ {𝑥} ∈ V)) |
| 38 | 36, 37 | mpbiri 258 |
. . . . . . 7
⊢ (𝐴 = {𝑥} → 𝐴 ∈ V) |
| 39 | 11, 12, 13, 14 | efmnd 18803 |
. . . . . . 7
⊢ (𝐴 ∈ V →
(EndoFMnd‘𝐴) =
{〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 40 | 38, 39 | syl 17 |
. . . . . 6
⊢ (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = {〈(Base‘ndx), 𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 41 | | snsymgefmndeq 19331 |
. . . . . . 7
⊢ (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) |
| 42 | 41, 5 | eqtr4di 2783 |
. . . . . 6
⊢ (𝐴 = {𝑥} → (EndoFMnd‘𝐴) = 𝐺) |
| 43 | 42 | fveq2d 6869 |
. . . . . . . . 9
⊢ (𝐴 = {𝑥} → (Base‘(EndoFMnd‘𝐴)) = (Base‘𝐺)) |
| 44 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(Base‘(EndoFMnd‘𝐴)) = (Base‘(EndoFMnd‘𝐴)) |
| 45 | 11, 44 | efmndbas 18804 |
. . . . . . . . . 10
⊢
(Base‘(EndoFMnd‘𝐴)) = (𝐴 ↑m 𝐴) |
| 46 | 45, 12 | eqtr4i 2756 |
. . . . . . . . 9
⊢
(Base‘(EndoFMnd‘𝐴)) = 𝑀 |
| 47 | 23, 20 | eqtr4i 2756 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
𝐵 |
| 48 | 43, 46, 47 | 3eqtr3g 2788 |
. . . . . . . 8
⊢ (𝐴 = {𝑥} → 𝑀 = 𝐵) |
| 49 | 48 | opeq2d 4852 |
. . . . . . 7
⊢ (𝐴 = {𝑥} → 〈(Base‘ndx), 𝑀〉 = 〈(Base‘ndx),
𝐵〉) |
| 50 | 49 | tpeq1d 4717 |
. . . . . 6
⊢ (𝐴 = {𝑥} → {〈(Base‘ndx), 𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 51 | 40, 42, 50 | 3eqtr3d 2773 |
. . . . 5
⊢ (𝐴 = {𝑥} → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 52 | 51 | exlimiv 1930 |
. . . 4
⊢
(∃𝑥 𝐴 = {𝑥} → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 53 | 35, 52 | biimtrdi 253 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ((♯‘𝐴) = 1 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 54 | | ssnpss 4077 |
. . . . . . 7
⊢ ((𝐴 ↑m 𝐴) ⊆ 𝐵 → ¬ 𝐵 ⊊ (𝐴 ↑m 𝐴)) |
| 55 | 11, 5 | symgpssefmnd 19332 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊
(Base‘(EndoFMnd‘𝐴))) |
| 56 | 20, 23 | eqtr4i 2756 |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
| 57 | 45 | eqcomi 2739 |
. . . . . . . . 9
⊢ (𝐴 ↑m 𝐴) =
(Base‘(EndoFMnd‘𝐴)) |
| 58 | 56, 57 | psseq12i 4065 |
. . . . . . . 8
⊢ (𝐵 ⊊ (𝐴 ↑m 𝐴) ↔ (Base‘𝐺) ⊊ (Base‘(EndoFMnd‘𝐴))) |
| 59 | 55, 58 | sylibr 234 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊊ (𝐴 ↑m 𝐴)) |
| 60 | 54, 59 | nsyl3 138 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ¬ (𝐴 ↑m 𝐴) ⊆ 𝐵) |
| 61 | | fvexd 6880 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) ∈ V) |
| 62 | | f1osetex 8836 |
. . . . . . . 8
⊢ {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ∈ V |
| 63 | 20, 62 | eqeltri 2825 |
. . . . . . 7
⊢ 𝐵 ∈ V |
| 64 | 63 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ∈ V) |
| 65 | 5, 20 | symgval 19307 |
. . . . . . 7
⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
| 66 | 65, 57 | ressval2 17211 |
. . . . . 6
⊢ ((¬
(𝐴 ↑m 𝐴) ⊆ 𝐵 ∧ (EndoFMnd‘𝐴) ∈ V ∧ 𝐵 ∈ V) → 𝐺 = ((EndoFMnd‘𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉)) |
| 67 | 60, 61, 64, 66 | syl3anc 1373 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = ((EndoFMnd‘𝐴) sSet 〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉)) |
| 68 | | ovex 7427 |
. . . . . . 7
⊢ (𝐴 ↑m 𝐴) ∈ V |
| 69 | 68 | inex2 5281 |
. . . . . 6
⊢ (𝐵 ∩ (𝐴 ↑m 𝐴)) ∈ V |
| 70 | | setsval 17143 |
. . . . . 6
⊢
(((EndoFMnd‘𝐴)
∈ V ∧ (𝐵 ∩
(𝐴 ↑m 𝐴)) ∈ V) →
((EndoFMnd‘𝐴) sSet
〈(Base‘ndx), (𝐵
∩ (𝐴 ↑m
𝐴))〉) =
(((EndoFMnd‘𝐴)
↾ (V ∖ {(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉})) |
| 71 | 61, 69, 70 | sylancl 586 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) sSet 〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉) = (((EndoFMnd‘𝐴) ↾ (V ∖
{(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉})) |
| 72 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (EndoFMnd‘𝐴) = {〈(Base‘ndx),
𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 73 | 72 | reseq1d 5957 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → ((EndoFMnd‘𝐴) ↾ (V ∖
{(Base‘ndx)})) = ({〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ↾ (V ∖
{(Base‘ndx)}))) |
| 74 | 73 | uneq1d 4138 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(((EndoFMnd‘𝐴)
↾ (V ∖ {(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = (({〈(Base‘ndx),
𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ↾ (V ∖
{(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉})) |
| 75 | | eqidd 2731 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
{〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} = {〈(Base‘ndx), 𝑀〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 76 | | fvexd 6880 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(+g‘ndx) ∈ V) |
| 77 | | fvexd 6880 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx)
∈ V) |
| 78 | 12, 68 | eqeltri 2825 |
. . . . . . . . . . 11
⊢ 𝑀 ∈ V |
| 79 | 78, 78 | mpoex 8067 |
. . . . . . . . . 10
⊢ (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) ∈ V |
| 80 | 13, 79 | eqeltri 2825 |
. . . . . . . . 9
⊢ + ∈
V |
| 81 | 80 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → + ∈ V) |
| 82 | 14 | fvexi 6879 |
. . . . . . . . 9
⊢ 𝐽 ∈ V |
| 83 | 82 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐽 ∈ V) |
| 84 | | basendxnplusgndx 17256 |
. . . . . . . . . 10
⊢
(Base‘ndx) ≠ (+g‘ndx) |
| 85 | 84 | necomi 2981 |
. . . . . . . . 9
⊢
(+g‘ndx) ≠ (Base‘ndx) |
| 86 | 85 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(+g‘ndx) ≠ (Base‘ndx)) |
| 87 | | tsetndxnbasendx 17325 |
. . . . . . . . 9
⊢
(TopSet‘ndx) ≠ (Base‘ndx) |
| 88 | 87 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (TopSet‘ndx)
≠ (Base‘ndx)) |
| 89 | 75, 76, 77, 81, 83, 86, 88 | tpres 7182 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
({〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ↾ (V ∖
{(Base‘ndx)})) = {〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 90 | 89 | uneq1d 4138 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(({〈(Base‘ndx), 𝑀〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ↾ (V ∖
{(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉}) =
({〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ∪ {〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉})) |
| 91 | | uncom 4129 |
. . . . . . . 8
⊢
({〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ∪ {〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = ({〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉} ∪
{〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 92 | | tpass 4724 |
. . . . . . . 8
⊢
{〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} = ({〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉} ∪
{〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 93 | 91, 92 | eqtr4i 2756 |
. . . . . . 7
⊢
({〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ∪ {〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} |
| 94 | 5, 56 | symgbasmap 19313 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐴 ↑m 𝐴)) |
| 95 | 94 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (𝑥 ∈ 𝐵 → 𝑥 ∈ (𝐴 ↑m 𝐴))) |
| 96 | 95 | ssrdv 3960 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐵 ⊆ (𝐴 ↑m 𝐴)) |
| 97 | | dfss2 3940 |
. . . . . . . . . 10
⊢ (𝐵 ⊆ (𝐴 ↑m 𝐴) ↔ (𝐵 ∩ (𝐴 ↑m 𝐴)) = 𝐵) |
| 98 | 96, 97 | sylib 218 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (𝐵 ∩ (𝐴 ↑m 𝐴)) = 𝐵) |
| 99 | 98 | opeq2d 4852 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
〈(Base‘ndx), (𝐵
∩ (𝐴 ↑m
𝐴))〉 =
〈(Base‘ndx), 𝐵〉) |
| 100 | 99 | tpeq1d 4717 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
{〈(Base‘ndx), (𝐵
∩ (𝐴 ↑m
𝐴))〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 101 | 93, 100 | eqtrid 2777 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
({〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} ∪ {〈(Base‘ndx),
(𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 102 | 74, 90, 101 | 3eqtrd 2769 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) →
(((EndoFMnd‘𝐴)
↾ (V ∖ {(Base‘ndx)})) ∪ {〈(Base‘ndx), (𝐵 ∩ (𝐴 ↑m 𝐴))〉}) = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 103 | 67, 71, 102 | 3eqtrd 2769 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 104 | 103 | ex 412 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (1 < (♯‘𝐴) → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 105 | 34, 53, 104 | 3jaod 1431 |
. 2
⊢ (𝐴 ∈ 𝑉 → (((♯‘𝐴) = 0 ∨ (♯‘𝐴) = 1 ∨ 1 < (♯‘𝐴)) → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 106 | 1, 105 | mpd 15 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |