MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmnd Structured version   Visualization version   GIF version

Theorem efmnd 18848
Description: The monoid of endofunctions on set 𝐴. (Contributed by AV, 25-Jan-2024.)
Hypotheses
Ref Expression
efmnd.1 𝐺 = (EndoFMnd‘𝐴)
efmnd.2 𝐵 = (𝐴m 𝐴)
efmnd.3 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
efmnd.4 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
Assertion
Ref Expression
efmnd (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Distinct variable group:   𝑓,𝑔,𝐴
Allowed substitution hints:   𝐵(𝑓,𝑔)   + (𝑓,𝑔)   𝐺(𝑓,𝑔)   𝐽(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem efmnd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmnd.1 . 2 𝐺 = (EndoFMnd‘𝐴)
2 elex 3480 . . 3 (𝐴𝑉𝐴 ∈ V)
3 ovexd 7440 . . . . 5 (𝑎 = 𝐴 → (𝑎m 𝑎) ∈ V)
4 id 22 . . . . . . . 8 (𝑏 = (𝑎m 𝑎) → 𝑏 = (𝑎m 𝑎))
5 id 22 . . . . . . . . . 10 (𝑎 = 𝐴𝑎 = 𝐴)
65, 5oveq12d 7423 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎m 𝑎) = (𝐴m 𝐴))
7 efmnd.2 . . . . . . . . 9 𝐵 = (𝐴m 𝐴)
86, 7eqtr4di 2788 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎m 𝑎) = 𝐵)
94, 8sylan9eqr 2792 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → 𝑏 = 𝐵)
109opeq2d 4856 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
11 eqidd 2736 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑔) = (𝑓𝑔))
129, 9, 11mpoeq123dv 7482 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
13 efmnd.3 . . . . . . . 8 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
1412, 13eqtr4di 2788 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔)) = + )
1514opeq2d 4856 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), + ⟩)
16 simpl 482 . . . . . . . . . 10 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → 𝑎 = 𝐴)
17 pweq 4589 . . . . . . . . . . . 12 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
1817sneqd 4613 . . . . . . . . . . 11 (𝑎 = 𝐴 → {𝒫 𝑎} = {𝒫 𝐴})
1918adantr 480 . . . . . . . . . 10 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → {𝒫 𝑎} = {𝒫 𝐴})
2016, 19xpeq12d 5685 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑎 × {𝒫 𝑎}) = (𝐴 × {𝒫 𝐴}))
2120fveq2d 6880 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (∏t‘(𝑎 × {𝒫 𝑎})) = (∏t‘(𝐴 × {𝒫 𝐴})))
22 efmnd.4 . . . . . . . 8 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
2321, 22eqtr4di 2788 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (∏t‘(𝑎 × {𝒫 𝑎})) = 𝐽)
2423opeq2d 4856 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
2510, 15, 24tpeq123d 4724 . . . . 5 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
263, 25csbied 3910 . . . 4 (𝑎 = 𝐴(𝑎m 𝑎) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
27 df-efmnd 18847 . . . 4 EndoFMnd = (𝑎 ∈ V ↦ (𝑎m 𝑎) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩})
28 tpex 7740 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∈ V
2926, 27, 28fvmpt 6986 . . 3 (𝐴 ∈ V → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
302, 29syl 17 . 2 (𝐴𝑉 → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
311, 30eqtrid 2782 1 (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  𝒫 cpw 4575  {csn 4601  {ctp 4605  cop 4607   × cxp 5652  ccom 5658  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  ndxcnx 17212  Basecbs 17228  +gcplusg 17271  TopSetcts 17277  tcpt 17452  EndoFMndcefmnd 18846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-efmnd 18847
This theorem is referenced by:  efmndbas  18849  efmndtset  18857  efmndplusg  18858  symgvalstruct  19378
  Copyright terms: Public domain W3C validator