Step | Hyp | Ref
| Expression |
1 | | efmnd.1 |
. 2
β’ πΊ = (EndoFMndβπ΄) |
2 | | elex 3462 |
. . 3
β’ (π΄ β π β π΄ β V) |
3 | | ovexd 7385 |
. . . . 5
β’ (π = π΄ β (π βm π) β V) |
4 | | id 22 |
. . . . . . . 8
β’ (π = (π βm π) β π = (π βm π)) |
5 | | id 22 |
. . . . . . . . . 10
β’ (π = π΄ β π = π΄) |
6 | 5, 5 | oveq12d 7368 |
. . . . . . . . 9
β’ (π = π΄ β (π βm π) = (π΄ βm π΄)) |
7 | | efmnd.2 |
. . . . . . . . 9
β’ π΅ = (π΄ βm π΄) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . . . 8
β’ (π = π΄ β (π βm π) = π΅) |
9 | 4, 8 | sylan9eqr 2800 |
. . . . . . 7
β’ ((π = π΄ β§ π = (π βm π)) β π = π΅) |
10 | 9 | opeq2d 4836 |
. . . . . 6
β’ ((π = π΄ β§ π = (π βm π)) β β¨(Baseβndx), πβ© = β¨(Baseβndx),
π΅β©) |
11 | | eqidd 2739 |
. . . . . . . . 9
β’ ((π = π΄ β§ π = (π βm π)) β (π β π) = (π β π)) |
12 | 9, 9, 11 | mpoeq123dv 7425 |
. . . . . . . 8
β’ ((π = π΄ β§ π = (π βm π)) β (π β π, π β π β¦ (π β π)) = (π β π΅, π β π΅ β¦ (π β π))) |
13 | | efmnd.3 |
. . . . . . . 8
β’ + = (π β π΅, π β π΅ β¦ (π β π)) |
14 | 12, 13 | eqtr4di 2796 |
. . . . . . 7
β’ ((π = π΄ β§ π = (π βm π)) β (π β π, π β π β¦ (π β π)) = + ) |
15 | 14 | opeq2d 4836 |
. . . . . 6
β’ ((π = π΄ β§ π = (π βm π)) β β¨(+gβndx),
(π β π, π β π β¦ (π β π))β© = β¨(+gβndx),
+
β©) |
16 | | simpl 484 |
. . . . . . . . . 10
β’ ((π = π΄ β§ π = (π βm π)) β π = π΄) |
17 | | pweq 4573 |
. . . . . . . . . . . 12
β’ (π = π΄ β π« π = π« π΄) |
18 | 17 | sneqd 4597 |
. . . . . . . . . . 11
β’ (π = π΄ β {π« π} = {π« π΄}) |
19 | 18 | adantr 482 |
. . . . . . . . . 10
β’ ((π = π΄ β§ π = (π βm π)) β {π« π} = {π« π΄}) |
20 | 16, 19 | xpeq12d 5662 |
. . . . . . . . 9
β’ ((π = π΄ β§ π = (π βm π)) β (π Γ {π« π}) = (π΄ Γ {π« π΄})) |
21 | 20 | fveq2d 6842 |
. . . . . . . 8
β’ ((π = π΄ β§ π = (π βm π)) β (βtβ(π Γ {π« π})) =
(βtβ(π΄ Γ {π« π΄}))) |
22 | | efmnd.4 |
. . . . . . . 8
β’ π½ =
(βtβ(π΄ Γ {π« π΄})) |
23 | 21, 22 | eqtr4di 2796 |
. . . . . . 7
β’ ((π = π΄ β§ π = (π βm π)) β (βtβ(π Γ {π« π})) = π½) |
24 | 23 | opeq2d 4836 |
. . . . . 6
β’ ((π = π΄ β§ π = (π βm π)) β β¨(TopSetβndx),
(βtβ(π Γ {π« π}))β© = β¨(TopSetβndx), π½β©) |
25 | 10, 15, 24 | tpeq123d 4708 |
. . . . 5
β’ ((π = π΄ β§ π = (π βm π)) β {β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(TopSetβndx),
(βtβ(π Γ {π« π}))β©} = {β¨(Baseβndx), π΅β©,
β¨(+gβndx), + β©,
β¨(TopSetβndx), π½β©}) |
26 | 3, 25 | csbied 3892 |
. . . 4
β’ (π = π΄ β β¦(π βm π) / πβ¦{β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(TopSetβndx),
(βtβ(π Γ {π« π}))β©} = {β¨(Baseβndx), π΅β©,
β¨(+gβndx), + β©,
β¨(TopSetβndx), π½β©}) |
27 | | df-efmnd 18615 |
. . . 4
β’ EndoFMnd
= (π β V β¦
β¦(π
βm π) /
πβ¦{β¨(Baseβndx), πβ©,
β¨(+gβndx), (π β π, π β π β¦ (π β π))β©, β¨(TopSetβndx),
(βtβ(π Γ {π« π}))β©}) |
28 | | tpex 7672 |
. . . 4
β’
{β¨(Baseβndx), π΅β©, β¨(+gβndx),
+ β©,
β¨(TopSetβndx), π½β©} β V |
29 | 26, 27, 28 | fvmpt 6944 |
. . 3
β’ (π΄ β V β
(EndoFMndβπ΄) =
{β¨(Baseβndx), π΅β©, β¨(+gβndx),
+ β©,
β¨(TopSetβndx), π½β©}) |
30 | 2, 29 | syl 17 |
. 2
β’ (π΄ β π β (EndoFMndβπ΄) = {β¨(Baseβndx), π΅β©,
β¨(+gβndx), + β©,
β¨(TopSetβndx), π½β©}) |
31 | 1, 30 | eqtrid 2790 |
1
β’ (π΄ β π β πΊ = {β¨(Baseβndx), π΅β©,
β¨(+gβndx), + β©,
β¨(TopSetβndx), π½β©}) |