MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmnd Structured version   Visualization version   GIF version

Theorem efmnd 18028
Description: The monoid of endofunctions on set 𝐴. (Contributed by AV, 25-Jan-2024.)
Hypotheses
Ref Expression
efmnd.1 𝐺 = (EndoFMnd‘𝐴)
efmnd.2 𝐵 = (𝐴m 𝐴)
efmnd.3 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
efmnd.4 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
Assertion
Ref Expression
efmnd (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Distinct variable group:   𝑓,𝑔,𝐴
Allowed substitution hints:   𝐵(𝑓,𝑔)   + (𝑓,𝑔)   𝐺(𝑓,𝑔)   𝐽(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem efmnd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmnd.1 . 2 𝐺 = (EndoFMnd‘𝐴)
2 elex 3509 . . 3 (𝐴𝑉𝐴 ∈ V)
3 ovexd 7184 . . . . 5 (𝑎 = 𝐴 → (𝑎m 𝑎) ∈ V)
4 id 22 . . . . . . . 8 (𝑏 = (𝑎m 𝑎) → 𝑏 = (𝑎m 𝑎))
5 id 22 . . . . . . . . . 10 (𝑎 = 𝐴𝑎 = 𝐴)
65, 5oveq12d 7167 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎m 𝑎) = (𝐴m 𝐴))
7 efmnd.2 . . . . . . . . 9 𝐵 = (𝐴m 𝐴)
86, 7syl6eqr 2873 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎m 𝑎) = 𝐵)
94, 8sylan9eqr 2877 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → 𝑏 = 𝐵)
109opeq2d 4803 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
11 eqidd 2821 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑔) = (𝑓𝑔))
129, 9, 11mpoeq123dv 7222 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
13 efmnd.3 . . . . . . . 8 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
1412, 13syl6eqr 2873 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔)) = + )
1514opeq2d 4803 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), + ⟩)
16 simpl 485 . . . . . . . . . 10 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → 𝑎 = 𝐴)
17 pweq 4548 . . . . . . . . . . . 12 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
1817sneqd 4572 . . . . . . . . . . 11 (𝑎 = 𝐴 → {𝒫 𝑎} = {𝒫 𝐴})
1918adantr 483 . . . . . . . . . 10 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → {𝒫 𝑎} = {𝒫 𝐴})
2016, 19xpeq12d 5579 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑎 × {𝒫 𝑎}) = (𝐴 × {𝒫 𝐴}))
2120fveq2d 6667 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (∏t‘(𝑎 × {𝒫 𝑎})) = (∏t‘(𝐴 × {𝒫 𝐴})))
22 efmnd.4 . . . . . . . 8 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
2321, 22syl6eqr 2873 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (∏t‘(𝑎 × {𝒫 𝑎})) = 𝐽)
2423opeq2d 4803 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
2510, 15, 24tpeq123d 4677 . . . . 5 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
263, 25csbied 3912 . . . 4 (𝑎 = 𝐴(𝑎m 𝑎) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
27 df-efmnd 18027 . . . 4 EndoFMnd = (𝑎 ∈ V ↦ (𝑎m 𝑎) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩})
28 tpex 7463 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∈ V
2926, 27, 28fvmpt 6761 . . 3 (𝐴 ∈ V → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
302, 29syl 17 . 2 (𝐴𝑉 → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
311, 30syl5eq 2867 1 (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3491  csb 3876  𝒫 cpw 4532  {csn 4560  {ctp 4564  cop 4566   × cxp 5546  ccom 5552  cfv 6348  (class class class)co 7149  cmpo 7151  m cmap 8399  ndxcnx 16473  Basecbs 16476  +gcplusg 16558  TopSetcts 16564  tcpt 16705  EndoFMndcefmnd 18026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-efmnd 18027
This theorem is referenced by:  efmndbas  18029  efmndtset  18037  efmndplusg  18038  symgvalstruct  18518
  Copyright terms: Public domain W3C validator