Step | Hyp | Ref
| Expression |
1 | | efmnd.1 |
. 2
⊢ 𝐺 = (EndoFMnd‘𝐴) |
2 | | elex 3450 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
3 | | ovexd 7310 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎 ↑m 𝑎) ∈ V) |
4 | | id 22 |
. . . . . . . 8
⊢ (𝑏 = (𝑎 ↑m 𝑎) → 𝑏 = (𝑎 ↑m 𝑎)) |
5 | | id 22 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) |
6 | 5, 5 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑎 ↑m 𝑎) = (𝐴 ↑m 𝐴)) |
7 | | efmnd.2 |
. . . . . . . . 9
⊢ 𝐵 = (𝐴 ↑m 𝐴) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎 ↑m 𝑎) = 𝐵) |
9 | 4, 8 | sylan9eqr 2800 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → 𝑏 = 𝐵) |
10 | 9 | opeq2d 4811 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → 〈(Base‘ndx), 𝑏〉 = 〈(Base‘ndx),
𝐵〉) |
11 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔)) |
12 | 9, 9, 11 | mpoeq123dv 7350 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
13 | | efmnd.3 |
. . . . . . . 8
⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
14 | 12, 13 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) = + ) |
15 | 14 | opeq2d 4811 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → 〈(+g‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉 = 〈(+g‘ndx),
+
〉) |
16 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → 𝑎 = 𝐴) |
17 | | pweq 4549 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴) |
18 | 17 | sneqd 4573 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → {𝒫 𝑎} = {𝒫 𝐴}) |
19 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → {𝒫 𝑎} = {𝒫 𝐴}) |
20 | 16, 19 | xpeq12d 5620 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → (𝑎 × {𝒫 𝑎}) = (𝐴 × {𝒫 𝐴})) |
21 | 20 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → (∏t‘(𝑎 × {𝒫 𝑎})) =
(∏t‘(𝐴 × {𝒫 𝐴}))) |
22 | | efmnd.4 |
. . . . . . . 8
⊢ 𝐽 =
(∏t‘(𝐴 × {𝒫 𝐴})) |
23 | 21, 22 | eqtr4di 2796 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → (∏t‘(𝑎 × {𝒫 𝑎})) = 𝐽) |
24 | 23 | opeq2d 4811 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉 = 〈(TopSet‘ndx), 𝐽〉) |
25 | 10, 15, 24 | tpeq123d 4684 |
. . . . 5
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = (𝑎 ↑m 𝑎)) → {〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
26 | 3, 25 | csbied 3870 |
. . . 4
⊢ (𝑎 = 𝐴 → ⦋(𝑎 ↑m 𝑎) / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
27 | | df-efmnd 18508 |
. . . 4
⊢ EndoFMnd
= (𝑎 ∈ V ↦
⦋(𝑎
↑m 𝑎) /
𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉}) |
28 | | tpex 7597 |
. . . 4
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V |
29 | 26, 27, 28 | fvmpt 6875 |
. . 3
⊢ (𝐴 ∈ V →
(EndoFMnd‘𝐴) =
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉}) |
30 | 2, 29 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → (EndoFMnd‘𝐴) = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
31 | 1, 30 | eqtrid 2790 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |