MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmnd Structured version   Visualization version   GIF version

Theorem efmnd 18830
Description: The monoid of endofunctions on set 𝐴. (Contributed by AV, 25-Jan-2024.)
Hypotheses
Ref Expression
efmnd.1 𝐺 = (EndoFMnd‘𝐴)
efmnd.2 𝐵 = (𝐴m 𝐴)
efmnd.3 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
efmnd.4 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
Assertion
Ref Expression
efmnd (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Distinct variable group:   𝑓,𝑔,𝐴
Allowed substitution hints:   𝐵(𝑓,𝑔)   + (𝑓,𝑔)   𝐺(𝑓,𝑔)   𝐽(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem efmnd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efmnd.1 . 2 𝐺 = (EndoFMnd‘𝐴)
2 elex 3480 . . 3 (𝐴𝑉𝐴 ∈ V)
3 ovexd 7454 . . . . 5 (𝑎 = 𝐴 → (𝑎m 𝑎) ∈ V)
4 id 22 . . . . . . . 8 (𝑏 = (𝑎m 𝑎) → 𝑏 = (𝑎m 𝑎))
5 id 22 . . . . . . . . . 10 (𝑎 = 𝐴𝑎 = 𝐴)
65, 5oveq12d 7437 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑎m 𝑎) = (𝐴m 𝐴))
7 efmnd.2 . . . . . . . . 9 𝐵 = (𝐴m 𝐴)
86, 7eqtr4di 2783 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎m 𝑎) = 𝐵)
94, 8sylan9eqr 2787 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → 𝑏 = 𝐵)
109opeq2d 4882 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
11 eqidd 2726 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑔) = (𝑓𝑔))
129, 9, 11mpoeq123dv 7495 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
13 efmnd.3 . . . . . . . 8 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
1412, 13eqtr4di 2783 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔)) = + )
1514opeq2d 4882 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), + ⟩)
16 simpl 481 . . . . . . . . . 10 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → 𝑎 = 𝐴)
17 pweq 4618 . . . . . . . . . . . 12 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
1817sneqd 4642 . . . . . . . . . . 11 (𝑎 = 𝐴 → {𝒫 𝑎} = {𝒫 𝐴})
1918adantr 479 . . . . . . . . . 10 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → {𝒫 𝑎} = {𝒫 𝐴})
2016, 19xpeq12d 5709 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (𝑎 × {𝒫 𝑎}) = (𝐴 × {𝒫 𝐴}))
2120fveq2d 6900 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (∏t‘(𝑎 × {𝒫 𝑎})) = (∏t‘(𝐴 × {𝒫 𝐴})))
22 efmnd.4 . . . . . . . 8 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
2321, 22eqtr4di 2783 . . . . . . 7 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → (∏t‘(𝑎 × {𝒫 𝑎})) = 𝐽)
2423opeq2d 4882 . . . . . 6 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
2510, 15, 24tpeq123d 4754 . . . . 5 ((𝑎 = 𝐴𝑏 = (𝑎m 𝑎)) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
263, 25csbied 3927 . . . 4 (𝑎 = 𝐴(𝑎m 𝑎) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
27 df-efmnd 18829 . . . 4 EndoFMnd = (𝑎 ∈ V ↦ (𝑎m 𝑎) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩})
28 tpex 7750 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∈ V
2926, 27, 28fvmpt 7004 . . 3 (𝐴 ∈ V → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
302, 29syl 17 . 2 (𝐴𝑉 → (EndoFMnd‘𝐴) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
311, 30eqtrid 2777 1 (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  csb 3889  𝒫 cpw 4604  {csn 4630  {ctp 4634  cop 4636   × cxp 5676  ccom 5682  cfv 6549  (class class class)co 7419  cmpo 7421  m cmap 8845  ndxcnx 17165  Basecbs 17183  +gcplusg 17236  TopSetcts 17242  tcpt 17423  EndoFMndcefmnd 18828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-efmnd 18829
This theorem is referenced by:  efmndbas  18831  efmndtset  18839  efmndplusg  18840  symgvalstruct  19363  symgvalstructOLD  19364
  Copyright terms: Public domain W3C validator