| Metamath
Proof Explorer Theorem List (p. 188 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | mhmf1o 18701 | A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 MndHom 𝑅))) | ||
| Theorem | mndvcl 18702 | Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼)) | ||
| Theorem | mndvass 18703 | Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → ((𝑋 ∘f + 𝑌) ∘f + 𝑍) = (𝑋 ∘f + (𝑌 ∘f + 𝑍))) | ||
| Theorem | mndvlid 18704 | Tuple-wise left identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝐼 × { 0 }) ∘f + 𝑋) = 𝑋) | ||
| Theorem | mndvrid 18705 | Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) | ||
| Theorem | mhmvlin 18706 | Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+g‘𝑁) ⇒ ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝐹 ∘ (𝑋 ∘f + 𝑌)) = ((𝐹 ∘ 𝑋) ∘f ⨣ (𝐹 ∘ 𝑌))) | ||
| Theorem | submrcl 18707 | Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | ||
| Theorem | issubm 18708* | Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) | ||
| Theorem | issubm2 18709 | Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) | ||
| Theorem | issubmndb 18710 | The submonoid predicate. Analogous to issubg 19036. (Contributed by AV, 1-Feb-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝐺) ↔ ((𝐺 ∈ Mnd ∧ (𝐺 ↾s 𝑆) ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆))) | ||
| Theorem | issubmd 18711* | Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) & ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) & ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) | ||
| Theorem | mndissubm 18712 | If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. Analogous to grpissubg 19056. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺))) | ||
| Theorem | resmndismnd 18713 | If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the other monoid is contained in the base set of the monoid, then the other monoid restricted to the base set of the monoid is a monoid. Analogous to resgrpisgrp 19057. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Mnd)) | ||
| Theorem | submss 18714 | Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 ⊆ 𝐵) | ||
| Theorem | submid 18715 | Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀)) | ||
| Theorem | subm0cl 18716 | Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 0 = (0g‘𝑀) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 0 ∈ 𝑆) | ||
| Theorem | submcl 18717 | Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | submmnd 18718 | Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝐻 ∈ Mnd) | ||
| Theorem | submbas 18719 | The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015.) |
| ⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻)) | ||
| Theorem | subm0 18720 | Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐻 = (𝑀 ↾s 𝑆) & ⊢ 0 = (0g‘𝑀) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 0 = (0g‘𝐻)) | ||
| Theorem | subsubm 18721 | A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | ||
| Theorem | 0subm 18722 | The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺)) | ||
| Theorem | insubm 18723 | The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.) |
| ⊢ ((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴 ∩ 𝐵) ∈ (SubMnd‘𝑀)) | ||
| Theorem | 0mhm 18724 | The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 0 = (0g‘𝑁) & ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) | ||
| Theorem | resmhm 18725 | Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.) |
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 MndHom 𝑇)) | ||
| Theorem | resmhm2 18726 | One direction of resmhm2b 18727. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇)) | ||
| Theorem | resmhm2b 18727 | Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈))) | ||
| Theorem | mhmco 18728 | The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MndHom 𝑈)) | ||
| Theorem | mhmimalem 18729* | Lemma for mhmima 18730 and similar theorems, formerly part of proof for mhmima 18730. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 16-Feb-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑀 MndHom 𝑁)) & ⊢ (𝜑 → 𝑋 ⊆ (Base‘𝑀)) & ⊢ (𝜑 → ⊕ = (+g‘𝑀)) & ⊢ (𝜑 → + = (+g‘𝑁)) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧 ⊕ 𝑥) ∈ 𝑋) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋)) | ||
| Theorem | mhmima 18730 | The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.) (Proof shortened by AV, 8-Mar-2025.) |
| ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) | ||
| Theorem | mhmeql 18731 | The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘𝑆)) | ||
| Theorem | submacs 18732 | Submonoids are an algebraic closure system. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵)) | ||
| Theorem | mndind 18733* | Induction in a monoid. In this theorem, 𝜓(𝑥) is the "generic" proposition to be be proved (the first four hypotheses tell its values at y, y+z, 0, A respectively). The two induction hypotheses mndind.i1 and mndind.i2 tell that it is true at 0, that if it is true at y then it is true at y+z (provided z is in 𝐺). The hypothesis mndind.k tells that 𝐺 is generating. (Contributed by SO, 14-Jul-2018.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 𝑧) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 0 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ 0 = (0g‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝐺 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 = ((mrCls‘(SubMnd‘𝑀))‘𝐺)) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐺) ∧ 𝜒) → 𝜃) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | prdspjmhm 18734* | A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑋) & ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom (𝑅‘𝐴))) | ||
| Theorem | pwspjmhm 18735* | A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅)) | ||
| Theorem | pwsdiagmhm 18736* | Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌)) | ||
| Theorem | pwsco1mhm 18737* | Right composition with a function on the index sets yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑅 ↑s 𝐵) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ (𝜑 → 𝑅 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 MndHom 𝑌)) | ||
| Theorem | pwsco2mhm 18738* | Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑆 ↑s 𝐴) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 MndHom 𝑆)) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 MndHom 𝑍)) | ||
One important use of words is as formal composites in cases where order is significant, using the general sum operator df-gsum 17343. If order is not significant, it is simpler to use families instead. | ||
| Theorem | gsumvallem2 18739* | Lemma for properties of the set of identities of 𝐺. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⇒ ⊢ (𝐺 ∈ Mnd → 𝑂 = { 0 }) | ||
| Theorem | gsumsubm 18740 | Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsumz 18741* | Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) | ||
| Theorem | gsumwsubmcl 18742 | Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) |
| ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) | ||
| Theorem | gsumws1 18743 | A singleton composite recovers the initial symbol. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ 𝐵 → (𝐺 Σg 〈“𝑆”〉) = 𝑆) | ||
| Theorem | gsumwcl 18744 | Closure of the composite of a word in a structure 𝐺. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝐺 Σg 𝑊) ∈ 𝐵) | ||
| Theorem | gsumsgrpccat 18745 | Homomorphic property of not empty composites of a group sum over a semigroup. Formerly part of proof for gsumccat 18746. (Contributed by AV, 26-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) ∧ (𝑊 ≠ ∅ ∧ 𝑋 ≠ ∅)) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) | ||
| Theorem | gsumccat 18746 | Homomorphic property of composites. Second formula in [Lang] p. 4. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 26-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑋 ∈ Word 𝐵) → (𝐺 Σg (𝑊 ++ 𝑋)) = ((𝐺 Σg 𝑊) + (𝐺 Σg 𝑋))) | ||
| Theorem | gsumws2 18747 | Valuation of a pair in a monoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → (𝐺 Σg 〈“𝑆𝑇”〉) = (𝑆 + 𝑇)) | ||
| Theorem | gsumccatsn 18748 | Homomorphic property of composites with a singleton. (Contributed by AV, 20-Jan-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝐺 Σg (𝑊 ++ 〈“𝑍”〉)) = ((𝐺 Σg 𝑊) + 𝑍)) | ||
| Theorem | gsumspl 18749 | The primary purpose of the splice construction is to enable local rewrites. Thus, in any monoidal valuation, if a splice does not cause a local change it does not cause a global change. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mnd) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑋 ∈ Word 𝐵) & ⊢ (𝜑 → 𝑌 ∈ Word 𝐵) & ⊢ (𝜑 → (𝑀 Σg 𝑋) = (𝑀 Σg 𝑌)) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑆 splice 〈𝐹, 𝑇, 𝑋〉)) = (𝑀 Σg (𝑆 splice 〈𝐹, 𝑇, 𝑌〉))) | ||
| Theorem | gsumwmhm 18750 | Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻 ∘ 𝑊))) | ||
| Theorem | gsumwspan 18751* | The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (mrCls‘(SubMnd‘𝑀)) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))) | ||
| Syntax | cfrmd 18752 | Extend class definition with the free monoid construction. |
| class freeMnd | ||
| Syntax | cvrmd 18753 | Extend class notation with free monoid injection. |
| class varFMnd | ||
| Definition | df-frmd 18754 | Define a free monoid over a set 𝑖 of generators, defined as the set of finite strings on 𝐼 with the operation of concatenation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ freeMnd = (𝑖 ∈ V ↦ {〈(Base‘ndx), Word 𝑖〉, 〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉}) | ||
| Definition | df-vrmd 18755* | Define a free monoid over a set 𝑖 of generators, defined as the set of finite strings on 𝐼 with the operation of concatenation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) | ||
| Theorem | frmdval 18756 | Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ (𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼) & ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉}) | ||
| Theorem | frmdbas 18757 | The base set of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = Word 𝐼) | ||
| Theorem | frmdelbas 18758 | An element of the base set of a free monoid is a string on the generators. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝐼) | ||
| Theorem | frmdplusg 18759 | The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) (Proof shortened by AV, 6-Nov-2024.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ + = ( ++ ↾ (𝐵 × 𝐵)) | ||
| Theorem | frmdadd 18760 | Value of the monoid operation of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ++ 𝑌)) | ||
| Theorem | vrmdfval 18761* | The canonical injection from the generating set 𝐼 to the base set of the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ 〈“𝑗”〉)) | ||
| Theorem | vrmdval 18762 | The value of the generating elements of a free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = 〈“𝐴”〉) | ||
| Theorem | vrmdf 18763 | The mapping from the index set to the generators is a function into the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) | ||
| Theorem | frmdmnd 18764 | A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd) | ||
| Theorem | frmd0 18765 | The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) ⇒ ⊢ ∅ = (0g‘𝑀) | ||
| Theorem | frmdsssubm 18766 | The set of words taking values in a subset is a (free) submonoid of the free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → Word 𝐽 ∈ (SubMnd‘𝑀)) | ||
| Theorem | frmdgsum 18767 | Any word in a free monoid can be expressed as the sum of the singletons composing it. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐼) → (𝑀 Σg (𝑈 ∘ 𝑊)) = 𝑊) | ||
| Theorem | frmdss2 18768 | A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of 𝐽 is Word 𝐽". (Contributed by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ 𝐴 ↔ Word 𝐽 ⊆ 𝐴)) | ||
| Theorem | frmdup1 18769* | Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝑀 MndHom 𝐺)) | ||
| Theorem | frmdup2 18770* | The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐸 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥))) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐵) & ⊢ 𝑈 = (varFMnd‘𝐼) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) | ||
| Theorem | frmdup3lem 18771* | Lemma for frmdup3 18772. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹 ∘ 𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴 ∘ 𝑥)))) | ||
| Theorem | frmdup3 18772* | Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑀 = (freeMnd‘𝐼) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑈 = (varFMnd‘𝐼) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴:𝐼⟶𝐵) → ∃!𝑚 ∈ (𝑀 MndHom 𝐺)(𝑚 ∘ 𝑈) = 𝐴) | ||
According to Wikipedia ("Endomorphism", 25-Jan-2024, https://en.wikipedia.org/wiki/Endomorphism) "An endofunction is a function whose domain is equal to its codomain.". An endofunction is sometimes also called "self-mapping" (see https://www.wikidata.org/wiki/Q1691962) or "self-map" (see https://mathworld.wolfram.com/Self-Map.html), in German "Selbstabbildung" (see https://de.wikipedia.org/wiki/Selbstabbildung). | ||
| Syntax | cefmnd 18773 | Extend class notation to include the class of monoids of endofunctions. |
| class EndoFMnd | ||
| Definition | df-efmnd 18774* | Define the monoid of endofunctions on set 𝑥. We represent the monoid as the set of functions from 𝑥 to itself ((𝑥 ↑m 𝑥)) under function composition, and topologize it as a function space assuming the set is discrete. Analogous to the former definition of SymGrp, see df-symg 19280 and symgvalstruct 19307. (Contributed by AV, 25-Jan-2024.) |
| ⊢ EndoFMnd = (𝑥 ∈ V ↦ ⦋(𝑥 ↑m 𝑥) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))〉}) | ||
| Theorem | efmnd 18775* | The monoid of endofunctions on set 𝐴. (Contributed by AV, 25-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
| Theorem | efmndbas 18776 | The base set of the monoid of endofunctions on class 𝐴. (Contributed by AV, 25-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = (𝐴 ↑m 𝐴) | ||
| Theorem | efmndbasabf 18777* | The base set of the monoid of endofunctions on class 𝐴 is the set of functions from 𝐴 into itself. (Contributed by AV, 29-Mar-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = {𝑓 ∣ 𝑓:𝐴⟶𝐴} | ||
| Theorem | elefmndbas 18778 | Two ways of saying a function is a mapping of 𝐴 to itself. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐴)) | ||
| Theorem | elefmndbas2 18779 | Two ways of saying a function is a mapping of 𝐴 to itself. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 29-Mar-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐴)) | ||
| Theorem | efmndbasf 18780 | Elements in the monoid of endofunctions on 𝐴 are functions from 𝐴 into itself. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴⟶𝐴) | ||
| Theorem | efmndhash 18781 | The monoid of endofunctions on 𝑛 objects has cardinality 𝑛↑𝑛. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = ((♯‘𝐴)↑(♯‘𝐴))) | ||
| Theorem | efmndbasfi 18782 | The monoid of endofunctions on a finite set 𝐴 is finite. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) | ||
| Theorem | efmndfv 18783 | The function value of an endofunction. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐴) | ||
| Theorem | efmndtset 18784 | The topology of the monoid of endofunctions on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just endofunctions - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by AV, 25-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | ||
| Theorem | efmndplusg 18785* | The group operation of a monoid of endofunctions is the function composition. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | ||
| Theorem | efmndov 18786 | The value of the group operation of the monoid of endofunctions on 𝐴. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) | ||
| Theorem | efmndcl 18787 | The group operation of the monoid of endofunctions on 𝐴 is closed. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | efmndtopn 18788 | The topology of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝑋) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑉 → ((∏t‘(𝑋 × {𝒫 𝑋})) ↾t 𝐵) = (TopOpen‘𝐺)) | ||
| Theorem | symggrplem 18789* | Lemma for symggrp 19310 and efmndsgrp 18791. Conditions for an operation to be associative. Formerly part of proof for symggrp 19310. (Contributed by AV, 28-Jan-2024.) |
| ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | efmndmgm 18790 | The monoid of endofunctions on a class 𝐴 is a magma. (Contributed by AV, 28-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 ∈ Mgm | ||
| Theorem | efmndsgrp 18791 | The monoid of endofunctions on a class 𝐴 is a semigroup. (Contributed by AV, 28-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 ∈ Smgrp | ||
| Theorem | ielefmnd 18792 | The identity function restricted to a set 𝐴 is an element of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) | ||
| Theorem | efmndid 18793 | The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) | ||
| Theorem | efmndmnd 18794 | The monoid of endofunctions on a set 𝐴 is actually a monoid. (Contributed by AV, 31-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) | ||
| Theorem | efmnd0nmnd 18795 | Even the monoid of endofunctions on the empty set is actually a monoid. (Contributed by AV, 31-Jan-2024.) |
| ⊢ (EndoFMnd‘∅) ∈ Mnd | ||
| Theorem | efmndbas0 18796 | The base set of the monoid of endofunctions on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Jan-2024.) (Proof shortened by AV, 31-Mar-2024.) |
| ⊢ (Base‘(EndoFMnd‘∅)) = {∅} | ||
| Theorem | efmnd1hash 18797 | The monoid of endofunctions on a singleton has cardinality 1. (Contributed by AV, 27-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → (♯‘𝐵) = 1) | ||
| Theorem | efmnd1bas 18798 | The monoid of endofunctions on a singleton consists of the identity only. (Contributed by AV, 31-Jan-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) | ||
| Theorem | efmnd2hash 18799 | The monoid of endofunctions on a (proper) pair has cardinality 4. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝐺 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 4) | ||
| Theorem | submefmnd 18800* | If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19319. (Contributed by AV, 17-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 0 = (0g‘𝑀) & ⊢ 𝐹 = (Base‘𝑆) ⇒ ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |