Home | Metamath
Proof Explorer Theorem List (p. 188 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nsgsubg 18701 | A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | ||
Theorem | nsgconj 18702 | The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) | ||
Theorem | isnsg3 18703* | A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆)) | ||
Theorem | subgacs 18704 | Subgroups are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) | ||
Theorem | nsgacs 18705 | Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (NrmSGrp‘𝐺) ∈ (ACS‘𝐵)) | ||
Theorem | elnmz 18706* | Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⇒ ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) | ||
Theorem | nmzbi 18707* | Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ⇒ ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) | ||
Theorem | nmzsubg 18708* | The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) | ||
Theorem | ssnmz 18709* | A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) | ||
Theorem | isnsg4 18710* | A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) | ||
Theorem | nmznsg 18711* | Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑁) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) | ||
Theorem | 0nsg 18712 | The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺)) | ||
Theorem | nsgid 18713 | The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) | ||
Theorem | 0idnsgd 18714 | The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺)) | ||
Theorem | trivnsgd 18715 | The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) = {𝐵}) | ||
Theorem | triv1nsgd 18716 | A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 = { 0 }) ⇒ ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) | ||
Theorem | 1nsgtrivd 18717 | A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) ⇒ ⊢ (𝜑 → 𝐵 = { 0 }) | ||
Theorem | releqg 18718 | The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ Rel 𝑅 | ||
Theorem | eqgfval 18719* | Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑅 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) | ||
Theorem | eqgval 18720 | Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑅 = (𝐺 ~QG 𝑆) ⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) | ||
Theorem | eqger 18721 | The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) ⇒ ⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) | ||
Theorem | eqglact 18722* | A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)) | ||
Theorem | eqgid 18723 | The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] ∼ = 𝑌) | ||
Theorem | eqgen 18724 | Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) ⇒ ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝐴) | ||
Theorem | eqgcpbl 18725 | The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) | ||
Theorem | qusgrp 18726 | If 𝑌 is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / 𝑌 is a group, called the quotient of 𝐺 by 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) | ||
Theorem | quseccl 18727 | Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ 𝐵) | ||
Theorem | qusadd 18728 | Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ ✚ = (+g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆) ✚ [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆)) | ||
Theorem | qus0 18729 | Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) | ||
Theorem | qusinv 18730 | Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝑁 = (invg‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) | ||
Theorem | qussub 18731 | Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝑁 = (-g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) | ||
Theorem | lagsubg2 18732 | Lagrange's theorem for finite groups. Call the "order" of a group the cardinal number of the basic set of the group, and "index of a subgroup" the cardinal number of the set of left (or right, this is the same) cosets of this subgroup. Then the order of the group is the (cardinal) product of the order of any of its subgroups by the index of this subgroup. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ ∼ = (𝐺 ~QG 𝑌) & ⊢ (𝜑 → 𝑌 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ Fin) ⇒ ⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / ∼ )) · (♯‘𝑌))) | ||
Theorem | lagsubg 18733 | Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋)) | ||
This section contains some preliminary results about cyclic monoids and groups before the class CycGrp of cyclic groups (see df-cyg 19393) is defined in the context of Abelian groups. | ||
Theorem | cycsubmel 18734* | Characterization of an element of the set of nonnegative integer powers of an element 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 ⇒ ⊢ (𝑋 ∈ 𝐶 ↔ ∃𝑖 ∈ ℕ0 𝑋 = (𝑖 · 𝐴)) | ||
Theorem | cycsubmcl 18735* | The set of nonnegative integer powers of an element 𝐴 contains 𝐴. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶) | ||
Theorem | cycsubm 18736* | The set of nonnegative integer powers of an element 𝐴 of a monoid forms a submonoid containing 𝐴 (see cycsubmcl 18735), called the cyclic monoid generated by the element 𝐴. This corresponds to the statement in [Lang] p. 6. (Contributed by AV, 28-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ (SubMnd‘𝐺)) | ||
Theorem | cyccom 18737* | Condition for an operation to be commutative. Lemma for cycsubmcom 18738 and cygabl 19406. Formerly part of proof for cygabl 19406. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 20-Jan-2024.) |
⊢ (𝜑 → ∀𝑐 ∈ 𝐶 ∃𝑥 ∈ 𝑍 𝑐 = (𝑥 · 𝐴)) & ⊢ (𝜑 → ∀𝑚 ∈ 𝑍 ∀𝑛 ∈ 𝑍 ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴) + (𝑛 · 𝐴))) & ⊢ (𝜑 → 𝑋 ∈ 𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐶) & ⊢ (𝜑 → 𝑍 ⊆ ℂ) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | cycsubmcom 18738* | The operation of a monoid is commutative over the set of nonnegative integer powers of an element 𝐴 of the monoid. (Contributed by AV, 20-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℕ0 ↦ (𝑥 · 𝐴)) & ⊢ 𝐶 = ran 𝐹 & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝐵) ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | cycsubggend 18739* | The cyclic subgroup generated by 𝐴 includes its generator. Although this theorem holds for any class 𝐺, the definition of 𝐹 is only meaningful if 𝐺 is a group. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ ran 𝐹) | ||
Theorem | cycsubgcl 18740* | The set of integer powers of an element 𝐴 of a group forms a subgroup containing 𝐴, called the cyclic group generated by the element 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹)) | ||
Theorem | cycsubgss 18741* | The cyclic subgroup generated by an element 𝐴 is a subset of any subgroup containing 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑆) → ran 𝐹 ⊆ 𝑆) | ||
Theorem | cycsubg 18742* | The cyclic group generated by 𝐴 is the smallest subgroup containing 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 = ∩ {𝑠 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑠}) | ||
Theorem | cycsubgcld 18743* | The cyclic subgroup generated by 𝐴 is a subgroup. Deduction related to cycsubgcl 18740. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 𝐴)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 ∈ (SubGrp‘𝐺)) | ||
Theorem | cycsubg2 18744* | The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ran 𝐹) | ||
Theorem | cycsubg2cl 18745 | Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) | ||
Syntax | cghm 18746 | Extend class notation with the generator of group hom-sets. |
class GrpHom | ||
Definition | df-ghm 18747* | A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | ||
Theorem | reldmghm 18748 | Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ Rel dom GrpHom | ||
Theorem | isghm 18749* | Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | ||
Theorem | isghm3 18750* | Property of a group homomorphism, similar to ismhm 18347. (Contributed by Mario Carneiro, 7-Mar-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | ||
Theorem | ghmgrp1 18751 | A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | ||
Theorem | ghmgrp2 18752 | A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | ||
Theorem | ghmf 18753 | A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) | ||
Theorem | ghmlin 18754 | A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) | ||
Theorem | ghmid 18755 | A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝑌 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) | ||
Theorem | ghminv 18756 | A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑀 = (invg‘𝑆) & ⊢ 𝑁 = (invg‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑀‘𝑋)) = (𝑁‘(𝐹‘𝑋))) | ||
Theorem | ghmsub 18757 | Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ − = (-g‘𝑆) & ⊢ 𝑁 = (-g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (𝐹‘(𝑈 − 𝑉)) = ((𝐹‘𝑈)𝑁(𝐹‘𝑉))) | ||
Theorem | isghmd 18758* | Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ (𝜑 → 𝑇 ∈ Grp) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
Theorem | ghmmhm 18759 | A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) | ||
Theorem | ghmmhmb 18760 | Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.) |
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | ||
Theorem | ghmmulg 18761 | A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ × = (.g‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) | ||
Theorem | ghmrn 18762 | The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇)) | ||
Theorem | 0ghm 18763 | The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 0 = (0g‘𝑁) & ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) | ||
Theorem | idghm 18764 | The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) | ||
Theorem | resghm 18765 | Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) | ||
Theorem | resghm2 18766 | One direction of resghm2b 18767. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
Theorem | resghm2b 18767 | Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) | ||
Theorem | ghmghmrn 18768 | A group homomorphism from 𝐺 to 𝐻 is also a group homomorphism from 𝐺 to its image in 𝐻. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by AV, 26-Aug-2021.) |
⊢ 𝑈 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) | ||
Theorem | ghmco 18769 | The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | ||
Theorem | ghmima 18770 | The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) | ||
Theorem | ghmpreima 18771 | The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) | ||
Theorem | ghmeql 18772 | The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) | ||
Theorem | ghmnsgima 18773 | The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹 “ 𝑈) ∈ (NrmSGrp‘𝑇)) | ||
Theorem | ghmnsgpreima 18774 | The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) | ||
Theorem | ghmker 18775 | The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
⊢ 0 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (◡𝐹 “ { 0 }) ∈ (NrmSGrp‘𝑆)) | ||
Theorem | ghmeqker 18776 | Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ − = (-g‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ (𝑈 − 𝑉) ∈ 𝐾)) | ||
Theorem | pwsdiagghm 18777* | Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) | ||
Theorem | ghmf1 18778* | Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑈 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋–1-1→𝑌 ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑥) = 𝑈 → 𝑥 = 0 ))) | ||
Theorem | ghmf1o 18779 | A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) | ||
Theorem | conjghm 18780* | Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋–1-1-onto→𝑋)) | ||
Theorem | conjsubg 18781* | A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) | ||
Theorem | conjsubgen 18782* | A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) | ||
Theorem | conjnmz 18783* | A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) | ||
Theorem | conjnmzb 18784* | Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹))) | ||
Theorem | conjnsg 18785* | A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) | ||
Theorem | qusghm 18786* | If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
Theorem | ghmpropd 18787* | Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) | ||
Syntax | cgim 18788 | The class of group isomorphism sets. |
class GrpIso | ||
Syntax | cgic 18789 | The class of the group isomorphism relation. |
class ≃𝑔 | ||
Definition | df-gim 18790* | An isomorphism of groups is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group operation. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) | ||
Definition | df-gic 18791 | Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | ||
Theorem | gimfn 18792 | The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ GrpIso Fn (Grp × Grp) | ||
Theorem | isgim 18793 | An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
Theorem | gimf1o 18794 | An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Theorem | gimghm 18795 | An isomorphism of groups is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
Theorem | isgim2 18796 | A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo 22818. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) | ||
Theorem | subggim 18797 | Behavior of subgroups under isomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆))) | ||
Theorem | gimcnv 18798 | The converse of a bijective group homomorphism is a bijective group homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) | ||
Theorem | gimco 18799 | The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) | ||
Theorem | brgic 18800 | The relation "is isomorphic to" for groups. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |