Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brerser Structured version   Visualization version   GIF version

Theorem brerser 38675
Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.)
Assertion
Ref Expression
brerser ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))

Proof of Theorem brerser
StepHypRef Expression
1 brers 38665 . . 3 (𝐴𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
21adantr 480 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
3 eleqvrelsrel 38591 . . . . 5 (𝑅𝑊 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
43adantl 481 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
5 brdmqssqs 38644 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
64, 5anbi12d 632 . . 3 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴)))
7 df-erALTV 38662 . . 3 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴))
86, 7bitr4di 289 . 2 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ 𝑅 ErALTV 𝐴))
92, 8bitrd 279 1 ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5092   EqvRels ceqvrels 38191   EqvRel weqvrel 38192   DomainQss cdmqss 38198   DomainQs wdmqs 38199   Ers cers 38200   ErALTV werALTV 38201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631  df-rels 38482  df-ssr 38495  df-refs 38507  df-refrels 38508  df-refrel 38509  df-syms 38539  df-symrels 38540  df-symrel 38541  df-trs 38569  df-trrels 38570  df-trrel 38571  df-eqvrels 38581  df-eqvrel 38582  df-dmqss 38635  df-dmqs 38636  df-ers 38661  df-erALTV 38662
This theorem is referenced by:  mpets2  38839  pets  38850
  Copyright terms: Public domain W3C validator