Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brerser | Structured version Visualization version GIF version |
Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.) |
Ref | Expression |
---|---|
brerser | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brers 36706 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) |
3 | eleqvrelsrel 36634 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) |
5 | brdmqssqs 36687 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | |
6 | 4, 5 | anbi12d 630 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴))) |
7 | df-erALTV 36703 | . . 3 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
8 | 6, 7 | bitr4di 288 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ 𝑅 ErALTV 𝐴)) |
9 | 2, 8 | bitrd 278 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 EqvRels ceqvrels 36276 EqvRel weqvrel 36277 DomainQss cdmqss 36283 DomainQs wdmqs 36284 Ers cers 36285 ErALTV werALTV 36286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 df-rels 36530 df-ssr 36543 df-refs 36555 df-refrels 36556 df-refrel 36557 df-syms 36583 df-symrels 36584 df-symrel 36585 df-trs 36613 df-trrels 36614 df-trrel 36615 df-eqvrels 36624 df-eqvrel 36625 df-dmqss 36678 df-dmqs 36679 df-ers 36702 df-erALTV 36703 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |