Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brerser Structured version   Visualization version   GIF version

Theorem brerser 36788
Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.)
Assertion
Ref Expression
brerser ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))

Proof of Theorem brerser
StepHypRef Expression
1 brers 36779 . . 3 (𝐴𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
21adantr 481 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
3 eleqvrelsrel 36707 . . . . 5 (𝑅𝑊 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
43adantl 482 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
5 brdmqssqs 36760 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
64, 5anbi12d 631 . . 3 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴)))
7 df-erALTV 36776 . . 3 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴))
86, 7bitr4di 289 . 2 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ 𝑅 ErALTV 𝐴))
92, 8bitrd 278 1 ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5074   EqvRels ceqvrels 36349   EqvRel weqvrel 36350   DomainQss cdmqss 36356   DomainQs wdmqs 36357   Ers cers 36358   ErALTV werALTV 36359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504  df-rels 36603  df-ssr 36616  df-refs 36628  df-refrels 36629  df-refrel 36630  df-syms 36656  df-symrels 36657  df-symrel 36658  df-trs 36686  df-trrels 36687  df-trrel 36688  df-eqvrels 36697  df-eqvrel 36698  df-dmqss 36751  df-dmqs 36752  df-ers 36775  df-erALTV 36776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator