Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brerser Structured version   Visualization version   GIF version

Theorem brerser 37484
Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.)
Assertion
Ref Expression
brerser ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))

Proof of Theorem brerser
StepHypRef Expression
1 brers 37474 . . 3 (𝐴𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
21adantr 482 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
3 eleqvrelsrel 37401 . . . . 5 (𝑅𝑊 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
43adantl 483 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
5 brdmqssqs 37454 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
64, 5anbi12d 632 . . 3 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴)))
7 df-erALTV 37471 . . 3 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴))
86, 7bitr4di 289 . 2 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ 𝑅 ErALTV 𝐴))
92, 8bitrd 279 1 ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5146   EqvRels ceqvrels 36996   EqvRel weqvrel 36997   DomainQss cdmqss 37003   DomainQs wdmqs 37004   Ers cers 37005   ErALTV werALTV 37006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5147  df-opab 5209  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ec 8700  df-qs 8704  df-rels 37292  df-ssr 37305  df-refs 37317  df-refrels 37318  df-refrel 37319  df-syms 37349  df-symrels 37350  df-symrel 37351  df-trs 37379  df-trrels 37380  df-trrel 37381  df-eqvrels 37391  df-eqvrel 37392  df-dmqss 37445  df-dmqs 37446  df-ers 37470  df-erALTV 37471
This theorem is referenced by:  mpets2  37648  pets  37659
  Copyright terms: Public domain W3C validator