![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brerser | Structured version Visualization version GIF version |
Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.) |
Ref | Expression |
---|---|
brerser | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brers 37474 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) |
3 | eleqvrelsrel 37401 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) | |
4 | 3 | adantl 483 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) |
5 | brdmqssqs 37454 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | |
6 | 4, 5 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴))) |
7 | df-erALTV 37471 | . . 3 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
8 | 6, 7 | bitr4di 289 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ 𝑅 ErALTV 𝐴)) |
9 | 2, 8 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 class class class wbr 5146 EqvRels ceqvrels 36996 EqvRel weqvrel 36997 DomainQss cdmqss 37003 DomainQs wdmqs 37004 Ers cers 37005 ErALTV werALTV 37006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5147 df-opab 5209 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ec 8700 df-qs 8704 df-rels 37292 df-ssr 37305 df-refs 37317 df-refrels 37318 df-refrel 37319 df-syms 37349 df-symrels 37350 df-symrel 37351 df-trs 37379 df-trrels 37380 df-trrel 37381 df-eqvrels 37391 df-eqvrel 37392 df-dmqss 37445 df-dmqs 37446 df-ers 37470 df-erALTV 37471 |
This theorem is referenced by: mpets2 37648 pets 37659 |
Copyright terms: Public domain | W3C validator |