| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brerser | Structured version Visualization version GIF version | ||
| Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| brerser | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brers 38659 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴))) |
| 3 | eleqvrelsrel 38585 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅)) |
| 5 | brdmqssqs 38638 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ 𝑅 DomainQs 𝐴)) | |
| 6 | 4, 5 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴))) |
| 7 | df-erALTV 38656 | . . 3 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) | |
| 8 | 6, 7 | bitr4di 289 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ 𝑅 ErALTV 𝐴)) |
| 9 | 2, 8 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Ers 𝐴 ↔ 𝑅 ErALTV 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 EqvRels ceqvrels 38185 EqvRel weqvrel 38186 DomainQss cdmqss 38192 DomainQs wdmqs 38193 Ers cers 38194 ErALTV werALTV 38195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-qs 8677 df-rels 38476 df-ssr 38489 df-refs 38501 df-refrels 38502 df-refrel 38503 df-syms 38533 df-symrels 38534 df-symrel 38535 df-trs 38563 df-trrels 38564 df-trrel 38565 df-eqvrels 38575 df-eqvrel 38576 df-dmqss 38629 df-dmqs 38630 df-ers 38655 df-erALTV 38656 |
| This theorem is referenced by: mpets2 38833 pets 38844 |
| Copyright terms: Public domain | W3C validator |