Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brerser Structured version   Visualization version   GIF version

Theorem brerser 36525
Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 25-Aug-2021.)
Assertion
Ref Expression
brerser ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))

Proof of Theorem brerser
StepHypRef Expression
1 brers 36516 . . 3 (𝐴𝑉 → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
21adantr 484 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴 ↔ (𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴)))
3 eleqvrelsrel 36444 . . . . 5 (𝑅𝑊 → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
43adantl 485 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 ∈ EqvRels ↔ EqvRel 𝑅))
5 brdmqssqs 36497 . . . 4 ((𝐴𝑉𝑅𝑊) → (𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴))
64, 5anbi12d 634 . . 3 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴)))
7 df-erALTV 36513 . . 3 (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴))
86, 7bitr4di 292 . 2 ((𝐴𝑉𝑅𝑊) → ((𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴) ↔ 𝑅 ErALTV 𝐴))
92, 8bitrd 282 1 ((𝐴𝑉𝑅𝑊) → (𝑅 Ers 𝐴𝑅 ErALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110   class class class wbr 5053   EqvRels ceqvrels 36086   EqvRel weqvrel 36087   DomainQss cdmqss 36093   DomainQs wdmqs 36094   Ers cers 36095   ErALTV werALTV 36096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ec 8393  df-qs 8397  df-rels 36340  df-ssr 36353  df-refs 36365  df-refrels 36366  df-refrel 36367  df-syms 36393  df-symrels 36394  df-symrel 36395  df-trs 36423  df-trrels 36424  df-trrel 36425  df-eqvrels 36434  df-eqvrel 36435  df-dmqss 36488  df-dmqs 36489  df-ers 36512  df-erALTV 36513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator