Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esplyval Structured version   Visualization version   GIF version

Theorem esplyval 33592
Description: The elementary polynomials for a given index 𝐼 of variables and base ring 𝑅. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Hypotheses
Ref Expression
esplyval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
esplyval.i (𝜑𝐼𝑉)
esplyval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
esplyval (𝜑 → (𝐼eSymPoly𝑅) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))))
Distinct variable groups:   𝐼,𝑐,,𝑘   𝑅,𝑘
Allowed substitution hints:   𝜑(,𝑘,𝑐)   𝐷(,𝑘,𝑐)   𝑅(,𝑐)   𝑉(,𝑘,𝑐)   𝑊(,𝑘,𝑐)

Proof of Theorem esplyval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-esply 33588 . . 3 eSymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))))
21a1i 11 . 2 (𝜑 → eSymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))))))
3 fveq2 6828 . . . . . 6 (𝑟 = 𝑅 → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
43adantl 481 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
5 oveq2 7360 . . . . . . . . . 10 (𝑖 = 𝐼 → (ℕ0m 𝑖) = (ℕ0m 𝐼))
65rabeqdv 3410 . . . . . . . . 9 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ finSupp 0} = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
7 esplyval.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
86, 7eqtr4di 2784 . . . . . . . 8 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ finSupp 0} = 𝐷)
98fveq2d 6832 . . . . . . 7 (𝑖 = 𝐼 → (𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0}) = (𝟭‘𝐷))
109adantr 480 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0}) = (𝟭‘𝐷))
11 fveq2 6828 . . . . . . . 8 (𝑖 = 𝐼 → (𝟭‘𝑖) = (𝟭‘𝐼))
1211adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝟭‘𝑖) = (𝟭‘𝐼))
13 pweq 4563 . . . . . . . . 9 (𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼)
1413rabeqdv 3410 . . . . . . . 8 (𝑖 = 𝐼 → {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})
1514adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})
1612, 15imaeq12d 6015 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}) = ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))
1710, 16fveq12d 6835 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})) = ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))
184, 17coeq12d 5809 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))))
1918mpteq2dv 5187 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))))
2019adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))))
21 esplyval.i . . 3 (𝜑𝐼𝑉)
2221elexd 3460 . 2 (𝜑𝐼 ∈ V)
23 esplyval.r . . 3 (𝜑𝑅𝑊)
2423elexd 3460 . 2 (𝜑𝑅 ∈ V)
25 nn0ex 12393 . . . 4 0 ∈ V
2625mptex 7163 . . 3 (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))) ∈ V
2726a1i 11 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))) ∈ V)
282, 20, 22, 24, 27ovmpod 7504 1 (𝜑 → (𝐼eSymPoly𝑅) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  𝒫 cpw 4549   class class class wbr 5093  cmpt 5174  cima 5622  ccom 5623  cfv 6487  (class class class)co 7352  cmpo 7354  m cmap 8756   finSupp cfsupp 9251  0cc0 11012  0cn0 12387  chash 14243  ℤRHomczrh 21442  𝟭cind 32838  eSymPolycesply 33586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-1cn 11070  ax-addcl 11072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12132  df-n0 12388  df-esply 33588
This theorem is referenced by:  esplyfval  33593
  Copyright terms: Public domain W3C validator