| Step | Hyp | Ref
| Expression |
| 1 | | df-esply 33549 |
. . 3
⊢ eSymPoly
= (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0
↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp
0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))))) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → eSymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑟)
∘ ((𝟭‘{ℎ
∈ (ℕ0 ↑m 𝑖) ∣ ℎ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))))) |
| 3 | | fveq2 6816 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (ℤRHom‘𝑟) = (ℤRHom‘𝑅)) |
| 4 | 3 | adantl 481 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (ℤRHom‘𝑟) = (ℤRHom‘𝑅)) |
| 5 | | oveq2 7348 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐼 → (ℕ0
↑m 𝑖) =
(ℕ0 ↑m 𝐼)) |
| 6 | 5 | rabeqdv 3407 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} =
{ℎ ∈
(ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0}) |
| 7 | | esplyval.d |
. . . . . . . . 9
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 8 | 6, 7 | eqtr4di 2782 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → {ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0} = 𝐷) |
| 9 | 8 | fveq2d 6820 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (𝟭‘{ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0}) =
(𝟭‘𝐷)) |
| 10 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝟭‘{ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp 0}) =
(𝟭‘𝐷)) |
| 11 | | fveq2 6816 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → (𝟭‘𝑖) = (𝟭‘𝐼)) |
| 12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝟭‘𝑖) = (𝟭‘𝐼)) |
| 13 | | pweq 4561 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼) |
| 14 | 13 | rabeqdv 3407 |
. . . . . . . 8
⊢ (𝑖 = 𝐼 → {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}) |
| 15 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}) |
| 16 | 12, 15 | imaeq12d 6006 |
. . . . . 6
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}) = ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})) |
| 17 | 10, 16 | fveq12d 6823 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((𝟭‘{ℎ ∈ (ℕ0
↑m 𝑖)
∣ ℎ finSupp
0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})) = ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))) |
| 18 | 4, 17 | coeq12d 5801 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → ((ℤRHom‘𝑟) ∘
((𝟭‘{ℎ ∈
(ℕ0 ↑m 𝑖) ∣ ℎ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))) |
| 19 | 18 | mpteq2dv 5182 |
. . 3
⊢ ((𝑖 = 𝐼 ∧ 𝑟 = 𝑅) → (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑟)
∘ ((𝟭‘{ℎ
∈ (ℕ0 ↑m 𝑖) ∣ ℎ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))) = (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑅)
∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))))) |
| 20 | 19 | adantl 481 |
. 2
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑟)
∘ ((𝟭‘{ℎ
∈ (ℕ0 ↑m 𝑖) ∣ ℎ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))) = (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑅)
∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))))) |
| 21 | | esplyval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 22 | 21 | elexd 3457 |
. 2
⊢ (𝜑 → 𝐼 ∈ V) |
| 23 | | esplyval.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| 24 | 23 | elexd 3457 |
. 2
⊢ (𝜑 → 𝑅 ∈ V) |
| 25 | | nn0ex 12378 |
. . . 4
⊢
ℕ0 ∈ V |
| 26 | 25 | mptex 7151 |
. . 3
⊢ (𝑘 ∈ ℕ0
↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))) ∈ V |
| 27 | 26 | a1i 11 |
. 2
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑅)
∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))) ∈ V) |
| 28 | 2, 20, 22, 24, 27 | ovmpod 7492 |
1
⊢ (𝜑 → (𝐼eSymPoly𝑅) = (𝑘 ∈ ℕ0 ↦
((ℤRHom‘𝑅)
∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))))) |