Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esplyval Structured version   Visualization version   GIF version

Theorem esplyval 33553
Description: The elementary polynomials for a given index 𝐼 of variables and base ring 𝑅. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Hypotheses
Ref Expression
esplyval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
esplyval.i (𝜑𝐼𝑉)
esplyval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
esplyval (𝜑 → (𝐼eSymPoly𝑅) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))))
Distinct variable groups:   𝐼,𝑐,,𝑘   𝑅,𝑘
Allowed substitution hints:   𝜑(,𝑘,𝑐)   𝐷(,𝑘,𝑐)   𝑅(,𝑐)   𝑉(,𝑘,𝑐)   𝑊(,𝑘,𝑐)

Proof of Theorem esplyval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-esply 33549 . . 3 eSymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))))
21a1i 11 . 2 (𝜑 → eSymPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))))))
3 fveq2 6816 . . . . . 6 (𝑟 = 𝑅 → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
43adantl 481 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → (ℤRHom‘𝑟) = (ℤRHom‘𝑅))
5 oveq2 7348 . . . . . . . . . 10 (𝑖 = 𝐼 → (ℕ0m 𝑖) = (ℕ0m 𝐼))
65rabeqdv 3407 . . . . . . . . 9 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ finSupp 0} = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
7 esplyval.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
86, 7eqtr4di 2782 . . . . . . . 8 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ finSupp 0} = 𝐷)
98fveq2d 6820 . . . . . . 7 (𝑖 = 𝐼 → (𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0}) = (𝟭‘𝐷))
109adantr 480 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0}) = (𝟭‘𝐷))
11 fveq2 6816 . . . . . . . 8 (𝑖 = 𝐼 → (𝟭‘𝑖) = (𝟭‘𝐼))
1211adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝟭‘𝑖) = (𝟭‘𝐼))
13 pweq 4561 . . . . . . . . 9 (𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼)
1413rabeqdv 3407 . . . . . . . 8 (𝑖 = 𝐼 → {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})
1514adantr 480 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})
1612, 15imaeq12d 6006 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}) = ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))
1710, 16fveq12d 6823 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})) = ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))
184, 17coeq12d 5801 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘}))) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))))
1918mpteq2dv 5182 . . 3 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))))
2019adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑟) ∘ ((𝟭‘{ ∈ (ℕ0m 𝑖) ∣ finSupp 0})‘((𝟭‘𝑖) “ {𝑐 ∈ 𝒫 𝑖 ∣ (♯‘𝑐) = 𝑘})))) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))))
21 esplyval.i . . 3 (𝜑𝐼𝑉)
2221elexd 3457 . 2 (𝜑𝐼 ∈ V)
23 esplyval.r . . 3 (𝜑𝑅𝑊)
2423elexd 3457 . 2 (𝜑𝑅 ∈ V)
25 nn0ex 12378 . . . 4 0 ∈ V
2625mptex 7151 . . 3 (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))) ∈ V
2726a1i 11 . 2 (𝜑 → (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))) ∈ V)
282, 20, 22, 24, 27ovmpod 7492 1 (𝜑 → (𝐼eSymPoly𝑅) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3392  Vcvv 3433  𝒫 cpw 4547   class class class wbr 5088  cmpt 5169  cima 5616  ccom 5617  cfv 6476  (class class class)co 7340  cmpo 7342  m cmap 8744   finSupp cfsupp 9239  0cc0 10997  0cn0 12372  chash 14225  ℤRHomczrh 21390  𝟭cind 32786  eSymPolycesply 33547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-1cn 11055  ax-addcl 11057
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7343  df-oprab 7344  df-mpo 7345  df-om 7791  df-2nd 7916  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-nn 12117  df-n0 12373  df-esply 33549
This theorem is referenced by:  esplyfval  33554
  Copyright terms: Public domain W3C validator