Detailed syntax breakdown of Definition df-extdg
Step | Hyp | Ref
| Expression |
1 | | cextdg 31744 |
. 2
class
[:] |
2 | | ve |
. . 3
setvar 𝑒 |
3 | | vf |
. . 3
setvar 𝑓 |
4 | | cvv 3434 |
. . 3
class
V |
5 | | cfldext 31741 |
. . . 4
class
/FldExt |
6 | 2 | cv 1536 |
. . . . 5
class 𝑒 |
7 | 6 | csn 4564 |
. . . 4
class {𝑒} |
8 | 5, 7 | cima 5594 |
. . 3
class
(/FldExt “ {𝑒}) |
9 | 3 | cv 1536 |
. . . . . 6
class 𝑓 |
10 | | cbs 16940 |
. . . . . 6
class
Base |
11 | 9, 10 | cfv 6447 |
. . . . 5
class
(Base‘𝑓) |
12 | | csra 20458 |
. . . . . 6
class
subringAlg |
13 | 6, 12 | cfv 6447 |
. . . . 5
class
(subringAlg ‘𝑒) |
14 | 11, 13 | cfv 6447 |
. . . 4
class
((subringAlg ‘𝑒)‘(Base‘𝑓)) |
15 | | cldim 31712 |
. . . 4
class
dim |
16 | 14, 15 | cfv 6447 |
. . 3
class
(dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))) |
17 | 2, 3, 4, 8, 16 | cmpo 7297 |
. 2
class (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦
(dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) |
18 | 1, 17 | wceq 1537 |
1
wff [:] =
(𝑒 ∈ V, 𝑓 ∈ (/FldExt
“ {𝑒}) ↦
(dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) |