Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgval | Structured version Visualization version GIF version |
Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
extdgval | ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfldext 31623 | . . 3 ⊢ Rel /FldExt | |
2 | 1 | brrelex1i 5634 | . 2 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ V) |
3 | elrelimasn 5982 | . . . 4 ⊢ (Rel /FldExt → (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹)) | |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹) |
5 | 4 | biimpri 227 | . 2 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ (/FldExt “ {𝐸})) |
6 | fvexd 6771 | . 2 ⊢ (𝐸/FldExt𝐹 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) | |
7 | simpl 482 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) | |
8 | 7 | fveq2d 6760 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (subringAlg ‘𝑒) = (subringAlg ‘𝐸)) |
9 | simpr 484 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
10 | 9 | fveq2d 6760 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
11 | 8, 10 | fveq12d 6763 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((subringAlg ‘𝑒)‘(Base‘𝑓)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))) |
12 | 11 | fveq2d 6760 | . . 3 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
13 | sneq 4568 | . . . 4 ⊢ (𝑒 = 𝐸 → {𝑒} = {𝐸}) | |
14 | 13 | imaeq2d 5958 | . . 3 ⊢ (𝑒 = 𝐸 → (/FldExt “ {𝑒}) = (/FldExt “ {𝐸})) |
15 | df-extdg 31620 | . . 3 ⊢ [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) | |
16 | 12, 14, 15 | ovmpox 7404 | . 2 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ (/FldExt “ {𝐸}) ∧ (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
17 | 2, 5, 6, 16 | syl3anc 1369 | 1 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 class class class wbr 5070 “ cima 5583 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 subringAlg csra 20345 dimcldim 31586 /FldExtcfldext 31615 [:]cextdg 31618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-fldext 31619 df-extdg 31620 |
This theorem is referenced by: extdgcl 31633 extdggt0 31634 extdgid 31637 extdgmul 31638 extdg1id 31640 ccfldextdgrr 31644 |
Copyright terms: Public domain | W3C validator |