| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgval | Structured version Visualization version GIF version | ||
| Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| extdgval | ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfldext 33647 | . . 3 ⊢ Rel /FldExt | |
| 2 | 1 | brrelex1i 5670 | . 2 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ V) |
| 3 | elrelimasn 6032 | . . . 4 ⊢ (Rel /FldExt → (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹)) | |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹) |
| 5 | 4 | biimpri 228 | . 2 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ (/FldExt “ {𝐸})) |
| 6 | fvexd 6832 | . 2 ⊢ (𝐸/FldExt𝐹 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) | |
| 7 | simpl 482 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) | |
| 8 | 7 | fveq2d 6821 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (subringAlg ‘𝑒) = (subringAlg ‘𝐸)) |
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 10 | 9 | fveq2d 6821 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
| 11 | 8, 10 | fveq12d 6824 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((subringAlg ‘𝑒)‘(Base‘𝑓)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))) |
| 12 | 11 | fveq2d 6821 | . . 3 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 13 | sneq 4584 | . . . 4 ⊢ (𝑒 = 𝐸 → {𝑒} = {𝐸}) | |
| 14 | 13 | imaeq2d 6006 | . . 3 ⊢ (𝑒 = 𝐸 → (/FldExt “ {𝑒}) = (/FldExt “ {𝐸})) |
| 15 | df-extdg 33645 | . . 3 ⊢ [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) | |
| 16 | 12, 14, 15 | ovmpox 7494 | . 2 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ (/FldExt “ {𝐸}) ∧ (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 17 | 2, 5, 6, 16 | syl3anc 1373 | 1 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 {csn 4574 class class class wbr 5089 “ cima 5617 Rel wrel 5619 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 subringAlg csra 21098 dimcldim 33601 /FldExtcfldext 33641 [:]cextdg 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-fldext 33644 df-extdg 33645 |
| This theorem is referenced by: extdgcl 33659 extdggt0 33660 extdgid 33663 extdgmul 33666 extdg1id 33669 ccfldextdgrr 33675 fldextrspunlem1 33678 fldextrspundgle 33681 finextalg 33701 algextdeglem4 33723 |
| Copyright terms: Public domain | W3C validator |