Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgval Structured version   Visualization version   GIF version

Theorem extdgval 33641
Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
extdgval (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))

Proof of Theorem extdgval
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfldext 33632 . . 3 Rel /FldExt
21brrelex1i 5710 . 2 (𝐸/FldExt𝐹𝐸 ∈ V)
3 elrelimasn 6073 . . . 4 (Rel /FldExt → (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹))
41, 3ax-mp 5 . . 3 (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹)
54biimpri 228 . 2 (𝐸/FldExt𝐹𝐹 ∈ (/FldExt “ {𝐸}))
6 fvexd 6890 . 2 (𝐸/FldExt𝐹 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V)
7 simpl 482 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑒 = 𝐸)
87fveq2d 6879 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (subringAlg ‘𝑒) = (subringAlg ‘𝐸))
9 simpr 484 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑓 = 𝐹)
109fveq2d 6879 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
118, 10fveq12d 6882 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((subringAlg ‘𝑒)‘(Base‘𝑓)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
1211fveq2d 6879 . . 3 ((𝑒 = 𝐸𝑓 = 𝐹) → (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
13 sneq 4611 . . . 4 (𝑒 = 𝐸 → {𝑒} = {𝐸})
1413imaeq2d 6047 . . 3 (𝑒 = 𝐸 → (/FldExt “ {𝑒}) = (/FldExt “ {𝐸}))
15 df-extdg 33629 . . 3 [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))))
1612, 14, 15ovmpox 7558 . 2 ((𝐸 ∈ V ∧ 𝐹 ∈ (/FldExt “ {𝐸}) ∧ (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
172, 5, 6, 16syl3anc 1373 1 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601   class class class wbr 5119  cima 5657  Rel wrel 5659  cfv 6530  (class class class)co 7403  Basecbs 17226  subringAlg csra 21127  dimcldim 33584  /FldExtcfldext 33624  [:]cextdg 33627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-fldext 33628  df-extdg 33629
This theorem is referenced by:  extdgcl  33644  extdggt0  33645  extdgid  33648  extdgmul  33651  extdg1id  33653  ccfldextdgrr  33659  fldextrspunlem1  33662  fldextrspundgle  33665  algextdeglem4  33700
  Copyright terms: Public domain W3C validator