| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgval | Structured version Visualization version GIF version | ||
| Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| extdgval | ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfldext 33691 | . . 3 ⊢ Rel /FldExt | |
| 2 | 1 | brrelex1i 5715 | . 2 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ V) |
| 3 | elrelimasn 6078 | . . . 4 ⊢ (Rel /FldExt → (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹)) | |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹) |
| 5 | 4 | biimpri 228 | . 2 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ (/FldExt “ {𝐸})) |
| 6 | fvexd 6896 | . 2 ⊢ (𝐸/FldExt𝐹 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) | |
| 7 | simpl 482 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) | |
| 8 | 7 | fveq2d 6885 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (subringAlg ‘𝑒) = (subringAlg ‘𝐸)) |
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 10 | 9 | fveq2d 6885 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
| 11 | 8, 10 | fveq12d 6888 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((subringAlg ‘𝑒)‘(Base‘𝑓)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))) |
| 12 | 11 | fveq2d 6885 | . . 3 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 13 | sneq 4616 | . . . 4 ⊢ (𝑒 = 𝐸 → {𝑒} = {𝐸}) | |
| 14 | 13 | imaeq2d 6052 | . . 3 ⊢ (𝑒 = 𝐸 → (/FldExt “ {𝑒}) = (/FldExt “ {𝐸})) |
| 15 | df-extdg 33688 | . . 3 ⊢ [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) | |
| 16 | 12, 14, 15 | ovmpox 7565 | . 2 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ (/FldExt “ {𝐸}) ∧ (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| 17 | 2, 5, 6, 16 | syl3anc 1373 | 1 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 class class class wbr 5124 “ cima 5662 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 subringAlg csra 21134 dimcldim 33643 /FldExtcfldext 33683 [:]cextdg 33686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-fldext 33687 df-extdg 33688 |
| This theorem is referenced by: extdgcl 33703 extdggt0 33704 extdgid 33707 extdgmul 33710 extdg1id 33712 ccfldextdgrr 33718 fldextrspunlem1 33721 fldextrspundgle 33724 algextdeglem4 33759 |
| Copyright terms: Public domain | W3C validator |