Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgval Structured version   Visualization version   GIF version

Theorem extdgval 31132
Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
extdgval (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))

Proof of Theorem extdgval
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfldext 31124 . . 3 Rel /FldExt
21brrelex1i 5572 . 2 (𝐸/FldExt𝐹𝐸 ∈ V)
3 elrelimasn 5920 . . . 4 (Rel /FldExt → (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹))
41, 3ax-mp 5 . . 3 (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹)
54biimpri 231 . 2 (𝐸/FldExt𝐹𝐹 ∈ (/FldExt “ {𝐸}))
6 fvexd 6660 . 2 (𝐸/FldExt𝐹 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V)
7 simpl 486 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑒 = 𝐸)
87fveq2d 6649 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (subringAlg ‘𝑒) = (subringAlg ‘𝐸))
9 simpr 488 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑓 = 𝐹)
109fveq2d 6649 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
118, 10fveq12d 6652 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((subringAlg ‘𝑒)‘(Base‘𝑓)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
1211fveq2d 6649 . . 3 ((𝑒 = 𝐸𝑓 = 𝐹) → (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
13 sneq 4535 . . . 4 (𝑒 = 𝐸 → {𝑒} = {𝐸})
1413imaeq2d 5896 . . 3 (𝑒 = 𝐸 → (/FldExt “ {𝑒}) = (/FldExt “ {𝐸}))
15 df-extdg 31121 . . 3 [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))))
1612, 14, 15ovmpox 7282 . 2 ((𝐸 ∈ V ∧ 𝐹 ∈ (/FldExt “ {𝐸}) ∧ (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
172, 5, 6, 16syl3anc 1368 1 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525   class class class wbr 5030  cima 5522  Rel wrel 5524  cfv 6324  (class class class)co 7135  Basecbs 16475  subringAlg csra 19933  dimcldim 31087  /FldExtcfldext 31116  [:]cextdg 31119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-fldext 31120  df-extdg 31121
This theorem is referenced by:  extdgcl  31134  extdggt0  31135  extdgid  31138  extdgmul  31139  extdg1id  31141  ccfldextdgrr  31145
  Copyright terms: Public domain W3C validator