![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > extdgval | Structured version Visualization version GIF version |
Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
extdgval | ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfldext 33466 | . . 3 ⊢ Rel /FldExt | |
2 | 1 | brrelex1i 5734 | . 2 ⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ V) |
3 | elrelimasn 6090 | . . . 4 ⊢ (Rel /FldExt → (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹)) | |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹) |
5 | 4 | biimpri 227 | . 2 ⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ (/FldExt “ {𝐸})) |
6 | fvexd 6911 | . 2 ⊢ (𝐸/FldExt𝐹 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) | |
7 | simpl 481 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑒 = 𝐸) | |
8 | 7 | fveq2d 6900 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (subringAlg ‘𝑒) = (subringAlg ‘𝐸)) |
9 | simpr 483 | . . . . . 6 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
10 | 9 | fveq2d 6900 | . . . . 5 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
11 | 8, 10 | fveq12d 6903 | . . . 4 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → ((subringAlg ‘𝑒)‘(Base‘𝑓)) = ((subringAlg ‘𝐸)‘(Base‘𝐹))) |
12 | 11 | fveq2d 6900 | . . 3 ⊢ ((𝑒 = 𝐸 ∧ 𝑓 = 𝐹) → (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
13 | sneq 4640 | . . . 4 ⊢ (𝑒 = 𝐸 → {𝑒} = {𝐸}) | |
14 | 13 | imaeq2d 6064 | . . 3 ⊢ (𝑒 = 𝐸 → (/FldExt “ {𝑒}) = (/FldExt “ {𝐸})) |
15 | df-extdg 33463 | . . 3 ⊢ [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) | |
16 | 12, 14, 15 | ovmpox 7574 | . 2 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ (/FldExt “ {𝐸}) ∧ (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
17 | 2, 5, 6, 16 | syl3anc 1368 | 1 ⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 {csn 4630 class class class wbr 5149 “ cima 5681 Rel wrel 5683 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 subringAlg csra 21068 dimcldim 33424 /FldExtcfldext 33458 [:]cextdg 33461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-fldext 33462 df-extdg 33463 |
This theorem is referenced by: extdgcl 33476 extdggt0 33477 extdgid 33480 extdgmul 33481 extdg1id 33483 ccfldextdgrr 33488 algextdeglem4 33516 |
Copyright terms: Public domain | W3C validator |