Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgval Structured version   Visualization version   GIF version

Theorem extdgval 31729
Description: Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
extdgval (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))

Proof of Theorem extdgval
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfldext 31721 . . 3 Rel /FldExt
21brrelex1i 5643 . 2 (𝐸/FldExt𝐹𝐸 ∈ V)
3 elrelimasn 5993 . . . 4 (Rel /FldExt → (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹))
41, 3ax-mp 5 . . 3 (𝐹 ∈ (/FldExt “ {𝐸}) ↔ 𝐸/FldExt𝐹)
54biimpri 227 . 2 (𝐸/FldExt𝐹𝐹 ∈ (/FldExt “ {𝐸}))
6 fvexd 6789 . 2 (𝐸/FldExt𝐹 → (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V)
7 simpl 483 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑒 = 𝐸)
87fveq2d 6778 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (subringAlg ‘𝑒) = (subringAlg ‘𝐸))
9 simpr 485 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → 𝑓 = 𝐹)
109fveq2d 6778 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
118, 10fveq12d 6781 . . . 4 ((𝑒 = 𝐸𝑓 = 𝐹) → ((subringAlg ‘𝑒)‘(Base‘𝑓)) = ((subringAlg ‘𝐸)‘(Base‘𝐹)))
1211fveq2d 6778 . . 3 ((𝑒 = 𝐸𝑓 = 𝐹) → (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
13 sneq 4571 . . . 4 (𝑒 = 𝐸 → {𝑒} = {𝐸})
1413imaeq2d 5969 . . 3 (𝑒 = 𝐸 → (/FldExt “ {𝑒}) = (/FldExt “ {𝐸}))
15 df-extdg 31718 . . 3 [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))))
1612, 14, 15ovmpox 7426 . 2 ((𝐸 ∈ V ∧ 𝐹 ∈ (/FldExt “ {𝐸}) ∧ (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))) ∈ V) → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
172, 5, 6, 16syl3anc 1370 1 (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   class class class wbr 5074  cima 5592  Rel wrel 5594  cfv 6433  (class class class)co 7275  Basecbs 16912  subringAlg csra 20430  dimcldim 31684  /FldExtcfldext 31713  [:]cextdg 31716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fldext 31717  df-extdg 31718
This theorem is referenced by:  extdgcl  31731  extdggt0  31732  extdgid  31735  extdgmul  31736  extdg1id  31738  ccfldextdgrr  31742
  Copyright terms: Public domain W3C validator